1

Learning HTN Method Preconditions and Action Models from Partial
Observations

Hankz Hankui Zhuo¢, Derek Hao Hu*, Chad Hogd, Qiang Yang® and Hector Munoz-Avila®
“ Dept of Computer Science and Engineering Dept of Computer Science & Engineering

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

{hankz, derekhh, qyan@cse.ust.hk

Abstract

To apply hierarchical task network (HTN) plan-
ning to real-world planning problems, one needs
to encode the HTN schemata and action mod-
els beforehand. However, acquiring such domain
knowledge is difficult and time-consuming because
the HTN domain definition involves a significant
knowledge-engineering effort. A system that can
learn the HTN planning domain knowledge auto-
matically would save time and allow HTN plan-
ning to be used in domains where such knowledge-
engineering effort is not feasible. In this paper, we
present a formal framework and algorithms to ac-
quire HTN planning domain knowledge, by learn-
ing the preconditions and effects of actions and
preconditions of methods. Our algorithm, HTN-
learner, first builds constraints from given observed
decomposition tree$o build action models and
method preconditions. It then solves these con-
straints using a weighted MAX-SAT solver. The
solution can be converted to action models and
method preconditions. Unlike prior work on HTN
learning, we do not depend on complete action
models or state information. We test the algorithm
on several domains, and show that our HTN-learner
algorithm is both effective and efficient.

Introduction

Lehigh Ursity
Bethlehem, PA, USA
{cmh204, munok@cse.lehigh.edu

Table 1: Comparison of different HTN learning algorithms

compared action | partial method
algorithms modelg observah. preconditions
HTN-learnet v v v
HTN-MAKER? X X vV

CaMeL, DInCAD X X Vv

Icarus, XLearn X X Vv

b: this paper.

b: [Hogget al,, 2009.

#: [lighamiet al, 2005; Xu and Miioz-Avila, 2003.
1: [Nejatiet al., 2006; Reddy and Tadepalli, 1997

2004, an instance of this problem has been studied, albeit
under the assumption that the preconditions and effects-of a
tions in the domain are fully specified and there is complete
observability of the states of the world. [Xu and Muhoz-
Avila, 2009 another instance of the problem is studied under
the assumption that an ontology indicating relations betwe
the objects is given. In the works dNejati et al., 2006;
Reddy and Tadepalli, 1997approaches are developed to
learn the hierarchical structure that relate the tasks abd s
tasks. Existing work on learning hierarchies elicits a duier
chy from a collection of plans and from a given action model.
In [Hogg et al, 2009, the HTN-MAKER algorithm learns
the decomposition methods for Hierarchical Task Networks.
However, so far all of these studies assume the complete ob-
servability of the intermediate states of the plans and a-com

In many real-world planning applications, HTN planning-sys plete action model being given. In real world situations, we
tems have shown their advantages in effectively using domainote that such learning problems are even more difficulesinc
knowledge to solve planning problerfisau et al, 200§. the observed plan traces we use as training data may contain
However, for HTN planning to be applicable, domain expertsncomplete and inconsistent information.
must first encode the HTN schemata and action models be- We present a new algorithm which we call HTN-learner
forehand. Acquiring such domain knowledge is difficult andthat learns the HTN method preconditions and the precon-
time-consuming since the HTN domain definition involves aditions and effects of actions in HTN planning under partial
significant knowledge-engineering effort. Thus, it is an im observability. Table 1 shows the major difference between
portant problem to be able to develop learning algorithms t@ur proposed learning problem and those of the past works.
help acquire the domain knowledge for HTN planning. Each column denotes whether the corresponding algorithm
The problem of learning some interesting aspects of HTNcould learn the action models or the method preconditions,
domain knowledge has captured the attention of many reand whether it supports partial observability of the platest.
searchers. In particular, learning the applicability ainds As input to HTN-learner, we assume that we have the de-
from given structural traces of HTNs has been the subject ofomposition structure in the form of task decompositioagre
recurrent research interest. In the workgdghamiet al, whose leaves are all primitive actions, which we explain in

detail in Section 3. These trees are readily available inesomare mainly designed for learning for non-hierarchical plan

real-world domains such as process planning, where humaming algorithms.

planners enter so-called Work-Breakdown Structures atelic)

ing the activities that must be accomplished for a project2-3 HTN Learning

These Work-Breakdown Structures can be mapped to hieraftighami et al, 2005; Xu and Maoz-Avila, 2005 propose

chical task networkEXu and Muioz-Avila, 2004. The main eager and lazy learning algorithms respectively, to lehen t

problem for the automated reuse of this knowledge is thatpreconditions of HTN methods. These systems require as in-

whereas the instances of the structural relations arelyeadiput the hierarchical relationships between tasks, themcti

available for such domains, their applicability condiscare models, and a complete description of the intermediatestat

neither given nor expected to be given by the human planneand learn the conditions under which a method may be used.
We present a novel framework to acquire domain knowl-Icarus uses means-end analysis to learn structure andpreco

edge, including learning action models and method preeondditions of the input plans by assuming that a model of the

tions. Our algorithm runs in two steps. First, we build threetasks in the form of Horn clauses is gividvejatiet al,, 2004.

kinds of constraints to encode the features of action modelslITN-MAKER also learns structures albeit assuming that a

and method preconditions from the observed decompositiomodel of the tasks is given in the form of preconditons and

trees. Second, we solve these constraints using a weightedfects for the taskiHogget al., 2004.

MAX-SAT solver [Borchers and Furman, 19p&nd convert

the result to action models and method preconditions. 3 Problem Definition

In the following, we first present the related work in Sec- , |
tion 2, and then define our learning problem in Section 3. Af-A Hierarchical Task Network (HTN) planning problem is de-

ter that, we give the detailed description of our main laagni fined as a quadrupléso, T, M, A), wheres, is an initial state
algorithm in Section 4. Finally, we give experimental resul which is a conjunction of proposition®,is a list of tasks that

and discussion to show our algorithm is effective and effi-.need to be accompllsheM IS a set ofmethodswh_|ch spec-
ify how a high-level task can be decomposed into a totally

cient. ordered set of lower-level subtasks, afids a set ofactions
which corresponds to the primitive subtasks that can be di-

2 Related Work rectly executed.

2.1 HTN Planning In this definition, each task has a task name with zero or

ore arguments, each of which is either a variable symbol or
constant symbol. A method is defined as ¢, PRE SUB),
wherem is a unique method name with zero or more argu-
ments¢ is the head task the method decomposes, PRE are the

. : : econditions of the method, and SUB is a list of subtasks int
the order they were generated into simpler and simpler SRz ihe head task may be decomposed. The arguments of
tasks until primitive tasks are reached that can be perfdrme L

directly. Specifically, for each non-primitive task, thapher m consist of the arguments of the head task, the arguments of

chooses an applicable method and instantiates it to deco each of the subtasks, and all terms used in the preconditions

pose the task into subtasks. When the decompaosition proces ach of the subtasks may be primitive, in which case they

I : . 8rrespond to an action schema, or non-primitive, in which
reach_es a primitive sub_task, the planner accomplishes it bé’ase they must be further decomposed. Each method precon-
applying its corresponding action in the usual STRIPS fash .

ion. The process stobs when all non-primitive tasks are deijition is a literal, and the set of method preconditions nivest
: P P P satisfied before the method can be applied.agtion model

composed into primitive subtasks, and outputs an action S€s defined as — (0, PRE ADD, DEL), whereo is an ac-
quence (i.e. a plan) as a solution. tion schema composed of an action name and zero or more
2.2 Learning Action Models arguments, PRE_ |smec0nd|t|on_llstADD is anadd listand

, , _ DEL is adelete list[Fikes and Nilsson, 1971
ARMS (action-relation modeling systeWa}nget al, 2007 A solutionto an HTN problem(so, T, M, A) is a list of
presents a framework for automatically discovering STRIPSecomposition treesin a decomposition tree, a leaf node is
[Fikes and Nilsson, 197%action models from a set of suc- 5 fylly instantiated action, and the set of actions can be di-
cessfully observed plans. It gathers knowledge on the stggctly executed from the initial state to accomplish thetroo
tistical distribution of frequent sets of actions in the ®xa |oyel task. All intermediate level subtasks are also futly i
ple plans without assuming complete knowledge of states igtantiated, and all preconditions of actions and precimndit
the middle of observed plans. In knowledge acquisition forof methods are satisfied. The roots of the trees correspond to
planning model learning, a computer system interacts with @e tasks irfr".
human expert to generate the needed action mdBéythe Our learning problem can be defined as: given as input a
et al, 2001; McCluskeyet al, 2003, where the states just |ist of decomposition trees with partially observed states
before or after each action are assumed to be kngAmir, wyeen the leaves of each decomposition tree, our learning al
2009 presented a tractable and exact technique for |eam'n§orithm outputs an HTN model including tteetion models

action models known as Simultaneous Learning and Filtering; ngmethod preconditiongAn examplé of the input is shown
where the state observations are needed for learning. While

these systems can learn action models of various forms, they *‘clean’ is a task to move off all the blocks above ‘?x,

We are focusing on a variant of HTN planning called Orderecg
Task DecompositiofNauet al., 2004, which is also the most

common variant of HTN planning by far. In this variant the
planning system generates a plan by decomposing tasks

T it (stack_from_table A B) 4.2 Step 1: Extracting the HTN Schemata
oo) AN , In this step, we extract the HTN schemata, including a pred-
(clear ©) makestaclfroni_tablexiter(A B C) icate list, an action-schema list and a method-structste li
fﬁffgfﬁpw P | We use a straightforward process to do this step. Firstly,
Partially observed (Cleangc) (pick-up A) o, (tack AB) g we scan_all the decomp05|t_|0n trees and substitute .aII Fhe
. N objectswith their corresponding variables, each of which is
£ | makeclean_init(A C) constrained by daype Secondly, we collect (1) all the dif-
s (unstack CA) s, (put-down C) ferent predicates as a predicate list, each of which has its

own arguments that are variables; (2) all the differentoaeti
schemas as an action-schema list, each of which is composed
of an action name and zero or more arguments that are vari-
ables; (3) all the different decompositions, each of which
in Figure 1. Figure 1 is an example of a decomposition tredS cOmMposed of a task and its corresponding subtasks, as a
with initial state or partially observed intermediate stgnot ~ Method-structure list. For example, from the decompasitio
shown in the figure) between leaves. The output of our algot®€ In Figure 1, we can extract (1) a predicate l{gon ?x-

rithm is the action models and method preconditions. block ?y-block), (ontable ?x-block), (clear ?x-blogk]2) an
action-schema list{(pick-up ?x-block),(stack ?x-block ?y-

block), (unstack ?x-block ?y-block), (put-down ?x-blogk)
4 Algorithm Description (3) a method-structure lisf((makestackrom_tableiter ?x-

]) .)) block ?y-block ?z-block), gtackfrom table ?x ?y) (clean
We first present an overview of the algorithm in Section 4.1,2x 2z)pick-up?x)(stack?x ?y)); ((makeclearinit ?x-block

and then provide the detailed description of each step in Se@y-plock), €lean ?x ?y)({instack?y ?x)put-down?y))},
tions 4.2-4.6. where a method-structure is described &srfethod-name,
task (subtask. . . subtask))”.

4.3 Step 2: Building State Constraints

Our algorithm takes a set of decomposition trees as inpujy 5 decomposition tree, if a predicate frequently appeers b
and produces preconditions and effects of actions as wehre an action is executed, and its parameters are also param
as method preconditions as output. To reach this aim, ifers of the action, then the predicate is likely to be a préon
first builds the various constraints from the observed statgqp of the action. Likewise, if a predicate frequently appe
information, including state constraints, decomposition- pefore a method is applied, it is likely to be a precondition
straints and action constraints. Based on these constréint f the method; if a predicate frequently appears after an ac-
will build a set of clauses and view it as a weighted maximunjop, js executed, it is likely to be an effect of the actionisTh
satisfiability problem, which is solved by a weighted MAX- jnformation will be encoded in the form of constraints in our
SAT solve{Borchers and Furman, 19p8he solutionto this |earning process. Since these constraints are built fremeth
MAX-SAT problem is the HTN model including the set of |51ions between states and actions, or states and metheds, w
action models and HTN method preconditions that best exgg)| these constraintstate constraints The following is the
plains the set of observed decomposition trees. An overvieWrocess of building state constrairf€’ (PARA(p) denotes

Figure 1: input: an example decomposition tree

4.1 Algorithm Framework

of the algorithm is shown in Algorithm 1. the set of parameters pf):

(1). By scanning all the decomposition trees, for each
Algorithm 1 Algorithm overview of HTN-learner predicatep in the state Wherg an acticmig executed and
Input: DTR: A set of decomposition trees with partially ob- PARA(p) C PARA(a), we build a constrainp € PREa),
served states between leaves. the set of which is denoted as RCwhich indicates the pos-
Output: The HTN modelH; sible candidates of predicates that might be a precondifion

actiona.
(2). For each predicatg in the state after an actiom is
executed and PAR&) C PARA(a), we build a constraint
p € ADD(a), the set of which is denoted as §C SG,,, in-
dicates the possible candidates of predicates that mighmbe
effect of actiora.
(3). For each predicate in the state where a method is
applied, we build a constraipte PREm), the set of which
is denoted as Sg,.

As a result, we get three kinds of constraints,&GG,,
e onbarlemriei : . , and SG,,, which together form the state constraints SC.
i?gckggrﬁf;%?gni‘; e;iask ge;?:éjk ‘tr_?xy %en %E),P“Viﬁentq?x?lgagr; With S%, we build weighted state constraints WSC with the
the table, and ‘makestadkom_tableiter’ is a method to be applied CalWeigh{SC) procedure that combines the instantiated con-
to ‘stack from_table’. ‘pick-up’, ‘put-down’, ‘stack’ and ‘unstack’ straints in SC into their corresponding variable-form con-
are four actions to pick up, put down, stack and un-stack ekblo straints, and assigns weights to these variable-form con-

. Extract the HTN schemata;

: Build state constraints SC;

. Build decomposition constraints DC;

: Build action constraints AC;

. Solve constraints using weighted MAX-SAT, and convert
the result to the HTN modél;

D return H;

G WNPE

(o]

straints. The procedure ahlWeigh{SC) can be described [Yanget al, 2007:

by the following steps: (1) replace all the instantiateduarg (1). An action may not add fact (instantiated atom) which
ments in SC with their corresponding variables, denoted thalready exists before the action is applied. This condtcain
results as G (2) calculate the output WSC of the procedurebe encoded ag € ADD(a) = p ¢ PRHa), wherep is an
by WSC= {{(w, ¢)|c € C" A w = numberOfc,C")}, where atom, ADD(a) is a set of added effects of the actionand

numberOfc, C') returns the number efs appearancesi@’. PRE«) is a set of preconditions af.
o o] (2). An action may not deletefact which does not exist be-
4.4 Step 3: Building Decomposition Constraints fore the action is applied. This constraint can be encoded as

In this step, we build decomposition constraints to enchde t p € DEL(a) = p € PREa), where DEl(a) is a set of delete
structure information provided by decomposition treesa If effects ofa.
taskT can be decomposed intosubtasksty, sts, ..., st,, These constraints are placed to ensure the learned action
we find that a subtask; often provides some preconditions models are succinct, and most existing planning domains sat
of a method for subtask; ;, making that method applica- isfy them. Nevertheless, our learning algorithm works per-
ble. As a result, this method can be applied to the next subfectly without them.
taskst; 1. Furthermore, we consider the constraint that the These constraints compose the action constraints AC. We
parameters of a precondition (or effect) should be includedenote asv,,., the maximal weight of all the constraints in
by the parameters of the action or method the preconditiofvySC and WDC, and assign,,., as the weight of all con-
(effect) belongs to. As a result, the decomposition coimda straints in AC. In this way, the weights of constraints in AC
DC can be built by the procedure as shown in Algorithm 2. are not less than the ones in WSC or WDC, which suggests
that the action constraints AC should be satisfied in manly rea
Algorithm 2 Build decomposition constraintbuildDecmp- applications, compared to the other two kinds of constsaint
ConstrOTR)
Input: A set of decomposition trees with partially observed4.6 Step 5: Solving the Constraints
states DTR;
Output: Decomposition constraints DC;
1: DC =
2: for each decomposition tre#r € DTR do
3: for each two subtasks; andst; in dtr do

By using Steps 2-4, three kinds of weighted constraints are
built to encode the information of action models and method
preconditions. Before the constraints can be solved by a
weighted MAX-SAT solver, the relative importance of these
three kindsof constraints must be determined. To do this,

4 i ’f< itﬂen q we introduce three new parameteks(l < i < 3) to con-

2 OrPRgzl E)A%A(Zik) A PARA(,) trol weights of each kind of constraints by:%:-w;, where

7 generate a set of predicates GP using PRS:; 0< 8 <1,1 <1< 3, andw; is a weight of theith kind

8: generate a constrainand add it to DC; of constraint. Notice that, by usmgﬂ’— we can easily ad-

9: end for just the weight from 0 t@o by simply adjustmgﬁZ from O to

10: end if 1. The weightw; will be replaced by—wl, and the result-
11: end for ing weighted constraints are solved by a weighted MAX-SAT
12: end for solver. As a result, &rue or false assignment will be out-
13: return DC; putted to maximally express the weighted constraints. Ac-

cording to the assignment the HTN model can be acquired
In the fourth step of Algorithm 2, we consider two tasks directly. For instance, if p € ADD(a)" is assignedrue in

st; andst; that have the same parent asid occurs earlier the result of the solver, thqnwnl be converted into an effect
thanst;. In the fifth stepn; is the number of actions to ac- Of the actionu in the HTN model.
complish the subtask:;, which is denoted as;1, a;o, ...,
ain,. 1N the sixth stepm; is the method which is applied :
to the subtaslst;. In thejseventh step, GP is generated by5 Experiment
GP = {p|PARA(p) C PRS. In the last step, the generated 5 1 patasets
constraintc is: p € GP— (p € ADD(a;x) A p € PREm;))
With DC, we build weighted decomposition constraints WDC In this section, we performed experiments to evaluate our al
by setting: WDC =calWeigh{DC), which is similar to the gorithm. In the experiment, we use the HTN domains called
procedure of calculating WSC. WDC can be solved directlyhtn-blockshtn-depotsindhtn-driverlogfor training and test-

by a weighted MAX-SAT solver. ing, which are created as HTN domains based on the domains
o _ _ blocks worldfrom IPC-22 anddepots, driverlogfrom IPC-
4.5 Step 4: Building Action Constraints 3 3 respectively. We generate 200 decomposition trees from

To make sure that the learned action models are valid and regach domain for training the HTN model, and compare the
sonable and could reflect some characteristics of realdworlresult to its corresponding handwritten HTN model.

action models, we need to further induce some constraints on

different actions. These constraints are imposed on iddivi 2http://www.cs.toronto.edu/aips2000/

ual actions which can be divided into the following two types 3http://planning.cis.strath.ac.uk/competition/

htn—blocks htn-depots htn—driverlog

0.25 0.25 0.25
0.2t . 0.2
+
2 g TARMS g *%% — ARMS*
= = 0.15 . = 015
o o R o
5] @ % 5 a % - .
= = 0 = o1 . 1
g g % «pHTN-learner r % HTN-learner s
0.05] 0.05 P 0.05)
0 0 0
1/51/4 1/3 1/2 1/1 1/51/4 1/3 1/2 11 1/51/4 1/3 1/2 11
percentage of observations percentage of observations percentage of observations

Figure 2: the total error with respect to the percentage seéolations

5.2 Evaluation Metric of both systems.

To evaluate our algorithm, we define two kinds of errors: We now analyze the relative importance of the three types
soundness erroand completeness errorIf a precondition ~ Of constraints, to show that all of them are needed to help im-
(or an effect) does not exist in the learned HTN model Prove the learning result. Therefore, with respect to cifee
while it did in the original model, then we call this situa- & We trainan HTN model by setting the percentage of obser-
tion a soundness errobecause this error will likely result Vations as 1/4, and calculate its total erréis From Figure

in situations where the learned method (or action) is agplie 3(2), we can see thaf, first decreases whef, increases,
while the original one was not. If a precondition (or an ef- Which means the state constraints should be more important
fect of an action) exists in the learned model, while it is notto improve the correctness. Theh; increases and keeps

in the original one, then we call this situationcamplete- ~ Stable at a constant value, that is because whereaches a
ness errorbecause this error will likely result in a learned high enough value, the importance of the two other kinds of
method (or action) not being applied in situations where theconstraints is reduced, and it plays a negative effect on our
original one is applicable. We denote the soundness errdgarning accuracy. From Figure 3(b), we can see thatje-

rate of an HTN model a&,, the completeness error rate as creases at first but increases quickly witerincreases. After

E., and the total error rate of an HTN model &s, where 52 reaches 0.5F; becomes unstable with respect to differ-
E, = E, + E,. Then we calculatéZ, and E, as follows: ent domains. This shows that, since the importance of other
E, = Y, Ea) = % soundness errorsef .4 constraints decreases whehis high enough, exploiting the

« all possible conditions of’ information of decomposition constraints is not good erioug
E. =Y E.a) =Y completeness errors f, where to extract useful rules to learn action models. The curve in
; . « all possible conditions of Figure 3(c) is similar to Figure 3(a), except that it is sherp
a can be an action or a method. than the one in Figure 3(a) befosg reaches 0.5, which sug-

gests that the information from action constraints is gjesn
than that from state constraints before 0.5.

To test the running time of HTN-learner, we set the per-
centage of observations as 1/4 and test HTN-learner with re-
r%pect to different number of decomposition trees. Thertgsti
resultis shownin Table 2. The running time of our algorithm
creases polynomially with the size of the input. To verify
ur claim, we use the relationship between the size of input
nd the CPU running time to estimate a function that could
est fit these points. We've found that we are able to fit the

5.3 Experimental Results

An alternative to HTN-learner also solving this problem
would be to learn the action models with ARNIganget al.,
2007 and separately learn the method preconditions with a
existing algorithm such as CaMdlighamiet al., 2004. To
determine the importance of learning the action models an
method preconditions simultaneously, we ran an experime
comparing HTN-learner against a hybrid system, that we cal
it ARMS™, which first uses ARMS to learn the action mod-
els and then uses the method-based constraints to learn tE‘Erformance curve with a polynomial of order 2 or order 3.
method preconditions. i We provide the polynomial for fittingtn-driverlog which is
The results of this experiment are shown in Figure 2. We) 11702 — 0.04102 — 1.2000. We also observed that the
varied the percentage ofintermediate states provided1rém tdtal error rafe decreasés wh.en the size of the input inereas

Itgalrr?grd \;g;ﬁggf? ttr?a?l.Sth:ar; %I]! (,:Aalglglsét?ﬁigrxa:sraéi Ogc'_t'(;ré\l' and it remains below 0.12 in all cases where there are more
P ' . than 140 decomposition trees available.

because constraints about the action models may provide in-
formation that may be exploited to find more accurate metho .
preconditions, and vice versa. The differences are more si Conclusion

nificant on the more complex domains such as htn-depotdn this paper, we have presented a novel algorithm HTN-
where combining the structural and action models providesearner to learn the action models and method preconditions
additional useful constraints that would not be generatadf of an HTN model. Given a set of partially observed decom-
the two separately. An increase in the number of intermediposition trees, HTN-learner builds a set of state, decompos
ate states that are specified generally increases the agcurdion, and action weighted constraints, and solves them avith

@ (b) ©

0.3 0.3 0.3
[¢
025}] 0.25} 0.25}.
& O-Zi . % & o2l ~ _ hin-driverlog htn-blocks \ g 02 «_htn-blocks
£ o1s N e t'njdml_rldepms o £ 015} 3 ' 2015 AN ; 3
g) fE] ~] R 3 »}mtn—depots
s o1 T e ol - \i____- _ % ___ B o1 mn—d%\‘/i?n&g: Z
-~ htn-depots
0.05 1 0.05f 0.05
0 : : : 0 : : : 0 : : :
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
By B By
Figure 3: the total error with respect to (@), (b) 52 or (c) 53
|_ number]| htn-driverlog| htn-blocks]| htn-depots| [Borchers and Furman, 19p®. Borchers and J. Furman. A
20 3 5 8 two-phase exact algorithm for MAX-SAT and weighted
40 8 13 18 MAX-SAT problems.J. Comb. Optim.2(4), 1998.
60 34 43 63 [Fikes and Nilsson, 1971R. Fikes and N. J. Nilsson.
80 65 98 98 STRIPS: A new approach to the application of theorem
100 102 73 132 proving to problem solving.Artificial Intelligence Jour-
120 91 112 121 nal, pages 189-208, 1971.
128 ;gg 1‘712 122 [Hogget al, 2009 C. Hogg, H. Muoz-Avila, and U. Kuter.
180 564 198 70 HTN-MAKER: Learning HTNs with minimal additional
knowledge engineering required. Pmoceedings of AAAI
200 283 234 323 pages 950-956, 2008.

Table 2: column 1 is the number of decomposition treesl!lghamietal, 2009 O. lighami, H. Muioz-Avila, D. S.
columns 2-4 are cpu times (seconds) Nau, and D. W. Aha. Learning approximate preconditions

for methods in hierarchical plans. Rroceedings of ICML
MAX-SAT solver. The solution obtained is the HTN model 00 oo o+ 2005
- solver. The solution obtained is the mode .

that best explains the observed decomposition trees. [Mg@luskeyet gngoﬁ L._ll__NMtl:Clulskey_, D. Lt'u' i"md R. Mt q

We observed the following conclusions from our empirical klmplsodn. o planning tm H?n 00 -Z_uppor]?
evaluation in 3 benchmark domains: (1) Simultaneously-solv Igz‘ge g¢e englzneleorllngzgggwonmen - Hoceedings o
ing the constraints reduces error in the learned HTN-model S pages 92-101, '
compared to first learning the action model and then learningNauet al, 2009 D. S. Nau, T. Au, O. lighami, U. Kuter,
the method’s preconditions, (2) By imposing the three types H. Munoz-Avila, J. W. Murdock, D. Wu, and F. Yaman.
of constraints, we can effectively reduce the hypothesisep ~ Applications of SHOP and SHOPZEEE Intelligent Sys-
of possible action models and method preconditions while us tems 20:34-41, 2005.
ing the input plan traces as an empirical basis, and (3) Thenejatiet al, 200§ N. Nejati, P. Langley, and T. Konik.
running time of our algorithm increases polynomially anel th | earning hierarchical task networks by obervationPto-
error rate decreases with the size of the input. Our methods ceedings of ICMLpages 665-672, 2006.

can reduce human efforts in acquiring HTN models and scal _ .
up planning in real-world applic%tionsg. fReddy a}nd Tadepalli, 1997(:.'. Reddy an_d P. Taqlepalll.
Learning goal-decomposition rules using exercises. In

Proceedings of ICMLpages 278-286, 1997.

Acknowledgment [X d Muoz-Avila, 2004 K. X d H. Muwoz-Avil
u and Muwoz-Avila, . Xu and H. Muioz-Avila.
\é\;elé%%nthgg Scuhpport Og Hor:jgtrlforlllg t(.:ERl(BSG_rant HFKUSJ CaBMA: Case-based project management assistant. In
' Ina Lab, and the National SCience Founda- p,ceedings of IAAlpages 931-936, 2004.

tion (NSF 0642882). _ _
[Xu and Mwioz-Avila, 2003 K. Xu and H. Muioz-Avila. A
domain-independent system for case-based task decompo-
Ref.erences]] . sition without domain theories. IRroceedings of AAAI
[Amir, 2009 E. Amir. Learning partially observable deter- pages 234-240, 2005.

Té{ggﬂ;éla?)c;lozno(r)%odels. IProceedings of 1JCAlpages [Yanget al, 2007 Q. Yang, K. Wu, and Y. Jiang. Learning
' ') action mlo_d.els from plan examples using weighted MAX-
[Blytheet al, 2001 J. Blythe, J. Kim, S. Ramachandran, SAT. Artificial Intelligence Journal171:107-143, Febru-
and Y. Gil. An integrated environment for knowledge ac- ary 2007.
quisition. InProceedings of IUlpages 13-20, 2001.

