
Learning HTN Method Preconditions and Action Models from Partial
Observations

Hankz Hankui Zhuoa, Derek Hao Hua, Chad Hoggb, Qiang Yanga and Hector Munoz-Avilab

a Dept of Computer Science and Engineeringb Dept of Computer Science & Engineering
Hong Kong University of Science and Technology Lehigh University

Clear Water Bay, Kowloon, Hong Kong Bethlehem, PA, USA
{hankz, derekhh, qyang}@cse.ust.hk {cmh204, munoz}@cse.lehigh.edu

Abstract

To apply hierarchical task network (HTN) plan-
ning to real-world planning problems, one needs
to encode the HTN schemata and action mod-
els beforehand. However, acquiring such domain
knowledge is difficult and time-consuming because
the HTN domain definition involves a significant
knowledge-engineering effort. A system that can
learn the HTN planning domain knowledge auto-
matically would save time and allow HTN plan-
ning to be used in domains where such knowledge-
engineering effort is not feasible. In this paper, we
present a formal framework and algorithms to ac-
quire HTN planning domain knowledge, by learn-
ing the preconditions and effects of actions and
preconditions of methods. Our algorithm, HTN-
learner, first builds constraints from given observed
decomposition treesto build action models and
method preconditions. It then solves these con-
straints using a weighted MAX-SAT solver. The
solution can be converted to action models and
method preconditions. Unlike prior work on HTN
learning, we do not depend on complete action
models or state information. We test the algorithm
on several domains, and show that our HTN-learner
algorithm is both effective and efficient.

1 Introduction
In many real-world planning applications, HTN planning sys-
tems have shown their advantages in effectively using domain
knowledge to solve planning problems[Nau et al., 2005].
However, for HTN planning to be applicable, domain experts
must first encode the HTN schemata and action models be-
forehand. Acquiring such domain knowledge is difficult and
time-consuming since the HTN domain definition involves a
significant knowledge-engineering effort. Thus, it is an im-
portant problem to be able to develop learning algorithms to
help acquire the domain knowledge for HTN planning.

The problem of learning some interesting aspects of HTN
domain knowledge has captured the attention of many re-
searchers. In particular, learning the applicability conditions
from given structural traces of HTNs has been the subject of
recurrent research interest. In the works of[Ilghami et al.,

Table 1: Comparison of different HTN learning algorithms
compared action partial method
algorithms models observab. preconditions

HTN-learner♭
√ √ √

HTN-MAKER♮ × × √
CaMeL, DInCAD♯ × × √
Icarus, XLearn† × × √

♭: this paper.
♮: [Hogget al., 2008].
♯: [Ilghamiet al., 2005; Xu and Mũnoz-Avila, 2005].
†: [Nejati et al., 2006; Reddy and Tadepalli, 1997].

2005], an instance of this problem has been studied, albeit
under the assumption that the preconditions and effects of ac-
tions in the domain are fully specified and there is complete
observability of the states of the world. In[Xu and Mũnoz-
Avila, 2005] another instance of the problem is studied under
the assumption that an ontology indicating relations between
the objects is given. In the works of[Nejati et al., 2006;
Reddy and Tadepalli, 1997], approaches are developed to
learn the hierarchical structure that relate the tasks and sub-
tasks. Existing work on learning hierarchies elicits a hierar-
chy from a collection of plans and from a given action model.
In [Hogg et al., 2008], the HTN-MAKER algorithm learns
the decomposition methods for Hierarchical Task Networks.
However, so far all of these studies assume the complete ob-
servability of the intermediate states of the plans and a com-
plete action model being given. In real world situations, we
note that such learning problems are even more difficult since
the observed plan traces we use as training data may contain
incomplete and inconsistent information.

We present a new algorithm which we call HTN-learner
that learns the HTN method preconditions and the precon-
ditions and effects of actions in HTN planning under partial
observability. Table 1 shows the major difference between
our proposed learning problem and those of the past works.
Each column denotes whether the corresponding algorithm
could learn the action models or the method preconditions,
and whether it supports partial observability of the plan states.
As input to HTN-learner, we assume that we have the de-
composition structure in the form of task decomposition trees
whose leaves are all primitive actions, which we explain in

detail in Section 3. These trees are readily available in some
real-world domains such as process planning, where human
planners enter so-called Work-Breakdown Structures indicat-
ing the activities that must be accomplished for a project.
These Work-Breakdown Structures can be mapped to hierar-
chical task networks[Xu and Mũnoz-Avila, 2004]. The main
problem for the automated reuse of this knowledge is that,
whereas the instances of the structural relations are readily
available for such domains, their applicability conditions are
neither given nor expected to be given by the human planner.

We present a novel framework to acquire domain knowl-
edge, including learning action models and method precondi-
tions. Our algorithm runs in two steps. First, we build three
kinds of constraints to encode the features of action models
and method preconditions from the observed decomposition
trees. Second, we solve these constraints using a weighted
MAX-SAT solver [Borchers and Furman, 1998], and convert
the result to action models and method preconditions.

In the following, we first present the related work in Sec-
tion 2, and then define our learning problem in Section 3. Af-
ter that, we give the detailed description of our main learning
algorithm in Section 4. Finally, we give experimental results
and discussion to show our algorithm is effective and effi-
cient.

2 Related Work
2.1 HTN Planning
We are focusing on a variant of HTN planning called Ordered
Task Decomposition[Nauet al., 2005], which is also the most
common variant of HTN planning by far. In this variant the
planning system generates a plan by decomposing tasks in
the order they were generated into simpler and simpler sub-
tasks until primitive tasks are reached that can be performed
directly. Specifically, for each non-primitive task, the planner
chooses an applicable method and instantiates it to decom-
pose the task into subtasks. When the decomposition process
reaches a primitive subtask, the planner accomplishes it by
applying its corresponding action in the usual STRIPS fash-
ion. The process stops when all non-primitive tasks are de-
composed into primitive subtasks, and outputs an action se-
quence (i.e. a plan) as a solution.

2.2 Learning Action Models
ARMS (action-relation modeling system)[Yanget al., 2007]
presents a framework for automatically discovering STRIPS
[Fikes and Nilsson, 1971] action models from a set of suc-
cessfully observed plans. It gathers knowledge on the sta-
tistical distribution of frequent sets of actions in the exam-
ple plans without assuming complete knowledge of states in
the middle of observed plans. In knowledge acquisition for
planning model learning, a computer system interacts with a
human expert to generate the needed action models[Blythe
et al., 2001; McCluskeyet al., 2003], where the states just
before or after each action are assumed to be known.[Amir,
2005] presented a tractable and exact technique for learning
action models known as Simultaneous Learning and Filtering,
where the state observations are needed for learning. While
these systems can learn action models of various forms, they

are mainly designed for learning for non-hierarchical plan-
ning algorithms.

2.3 HTN Learning
[Ilghami et al., 2005; Xu and Mũnoz-Avila, 2005] propose
eager and lazy learning algorithms respectively, to learn the
preconditions of HTN methods. These systems require as in-
put the hierarchical relationships between tasks, the action
models, and a complete description of the intermediate states
and learn the conditions under which a method may be used.
Icarus uses means-end analysis to learn structure and precon-
ditions of the input plans by assuming that a model of the
tasks in the form of Horn clauses is given[Nejatiet al., 2006].
HTN-MAKER also learns structures albeit assuming that a
model of the tasks is given in the form of preconditons and
effects for the tasks[Hogget al., 2008].

3 Problem Definition
A Hierarchical Task Network (HTN) planning problem is de-
fined as a quadruplet(s0, T, M, A), wheres0 is an initial state
which is a conjunction of propositions,T is a list of tasks that
need to be accomplished,M is a set ofmethods, which spec-
ify how a high-level task can be decomposed into a totally
ordered set of lower-level subtasks, andA is a set ofactions,
which corresponds to the primitive subtasks that can be di-
rectly executed.

In this definition, each task has a task name with zero or
more arguments, each of which is either a variable symbol or
a constant symbol. A method is defined as(m, t, PRE, SUB),
wherem is a unique method name with zero or more argu-
ments,t is the head task the method decomposes, PRE are the
preconditions of the method, and SUB is a list of subtasks into
which the head task may be decomposed. The arguments of
m consist of the arguments of the head task, the arguments of
each of the subtasks, and all terms used in the preconditions.
Each of the subtasks may be primitive, in which case they
correspond to an action schema, or non-primitive, in which
case they must be further decomposed. Each method precon-
dition is a literal, and the set of method preconditions mustbe
satisfied before the method can be applied. Anaction model
a is defined asa = (o, PRE, ADD, DEL), whereo is an ac-
tion schema composed of an action name and zero or more
arguments, PRE is aprecondition list, ADD is anadd listand
DEL is adelete list[Fikes and Nilsson, 1971].

A solution to an HTN problem(s0, T, M, A) is a list of
decomposition trees. In a decomposition tree, a leaf node is
a fully instantiated action, and the set of actions can be di-
rectly executed from the initial state to accomplish the root
level task. All intermediate level subtasks are also fully in-
stantiated, and all preconditions of actions and preconditions
of methods are satisfied. The roots of the trees correspond to
the tasks inT .

Our learning problem can be defined as: given as input a
list of decomposition trees with partially observed statesbe-
tween the leaves of each decomposition tree, our learning al-
gorithm outputs an HTN model including theaction models
andmethod preconditions. An example1 of the input is shown

1‘clean’ is a task to move off all the blocks above ‘?x’,

(stack_from_table A B)

(clean A C) (pick-up A) (stack A B)

makestack_from_table_iter(A B C)

(unstack C A) (put-down C)

makeclean_init(A C)

Initial state s0:

(on C A)

(ontable A)

(ontable B)

(clear C)

(clear B)

(handempty)
Partially observed

states: s1, s2, ...

s0 s1

s2
s3

g

Goal state: g

Figure 1: input: an example decomposition tree

in Figure 1. Figure 1 is an example of a decomposition tree
with initial state or partially observed intermediate states (not
shown in the figure) between leaves. The output of our algo-
rithm is the action models and method preconditions.

4 Algorithm Description

We first present an overview of the algorithm in Section 4.1,
and then provide the detailed description of each step in Sec-
tions 4.2-4.6.

4.1 Algorithm Framework

Our algorithm takes a set of decomposition trees as input,
and produces preconditions and effects of actions as well
as method preconditions as output. To reach this aim, it
first builds the various constraints from the observed state
information, including state constraints, decompositioncon-
straints and action constraints. Based on these constraints, it
will build a set of clauses and view it as a weighted maximum
satisfiability problem, which is solved by a weighted MAX-
SAT solver[Borchers and Furman, 1998]. The solution to this
MAX-SAT problem is the HTN model including the set of
action models and HTN method preconditions that best ex-
plains the set of observed decomposition trees. An overview
of the algorithm is shown in Algorithm 1.

Algorithm 1 Algorithm overview of HTN-learner
Input: DTR: A set of decomposition trees with partially ob-
served states between leaves.
Output: The HTN modelH ;
1: Extract the HTN schemata;
2: Build state constraints SC;
3: Build decomposition constraints DC;
4: Build action constraints AC;
5: Solve constraints using weighted MAX-SAT, and convert

the result to the HTN modelH ;
6: return H ;

and ‘makecleaninit’ is a method to be applied to ‘clean’.
‘stack from table’ is a task to stack ‘?x’ on ‘?y’ when ‘?x’ is on
the table, and ‘makestackfrom table iter’ is a method to be applied
to ‘stack from table’. ‘pick-up’, ‘put-down’, ‘stack’ and ‘unstack’
are four actions to pick up, put down, stack and un-stack a block.

4.2 Step 1: Extracting the HTN Schemata
In this step, we extract the HTN schemata, including a pred-
icate list, an action-schema list and a method-structure list.
We use a straightforward process to do this step. Firstly,
we scan all the decomposition trees and substitute all the
objectswith their corresponding variables, each of which is
constrained by atype. Secondly, we collect (1) all the dif-
ferent predicates as a predicate list, each of which has its
own arguments that are variables; (2) all the different action-
schemas as an action-schema list, each of which is composed
of an action name and zero or more arguments that are vari-
ables; (3) all the different decompositions, each of which
is composed of a task and its corresponding subtasks, as a
method-structure list. For example, from the decomposition
tree in Figure 1, we can extract (1) a predicate list:{(on ?x-
block ?y-block), (ontable ?x-block), (clear ?x-block)}; (2) an
action-schema list:{(pick-up ?x-block),(stack ?x-block ?y-
block), (unstack ?x-block ?y-block), (put-down ?x-block)};
(3) a method-structure list:{〈(makestackfrom table iter ?x-
block ?y-block ?z-block), (stackfrom table ?x ?y) ((clean
?x ?z)(pick-up?x)(stack?x ?y))〉; 〈(makecleaninit ?x-block
?y-block), (clean ?x ?y)((unstack?y ?x)(put-down?y))〉},
where a method-structure is described as “〈 method-name,
task (subtask1 . . . subtaskk)〉”.
4.3 Step 2: Building State Constraints
In a decomposition tree, if a predicate frequently appears be-
fore an action is executed, and its parameters are also parame-
ters of the action, then the predicate is likely to be a precondi-
tion of the action. Likewise, if a predicate frequently appears
before a method is applied, it is likely to be a precondition
of the method; if a predicate frequently appears after an ac-
tion is executed, it is likely to be an effect of the action. This
information will be encoded in the form of constraints in our
learning process. Since these constraints are built from the re-
lations between states and actions, or states and methods, we
call these constraintsstate constraints. The following is the
process of building state constraintsSC (PARA(p) denotes
the set of parameters ofp.):
(1). By scanning all the decomposition trees, for each
predicatep in the state where an actiona is executed and
PARA(p) ⊆ PARA(a), we build a constraintp ∈ PRE(a),
the set of which is denoted as SCpa, which indicates the pos-
sible candidates of predicates that might be a preconditionof
actiona.
(2). For each predicatep in the state after an actiona is
executed and PARA(p) ⊆ PARA(a), we build a constraint
p ∈ ADD(a), the set of which is denoted as SCap. SCap in-
dicates the possible candidates of predicates that might bean
effect of actiona.
(3). For each predicatep in the state where a methodm is
applied, we build a constraintp ∈ PRE(m), the set of which
is denoted as SCpm.

As a result, we get three kinds of constraints SCpa, SCap

and SCpm, which together form the state constraints SC.
With SC, we build weighted state constraints WSC with the
calWeight(SC) procedure that combines the instantiated con-
straints in SC into their corresponding variable-form con-
straints, and assigns weights to these variable-form con-

straints. The procedure ofcalWeight(SC) can be described
by the following steps: (1) replace all the instantiated argu-
ments in SC with their corresponding variables, denoted the
results as C′; (2) calculate the output WSC of the procedure
by WSC= {〈w, c〉|c ∈ C′ ∧ w = numberOf(c, C′)}, where
numberOf(c, C′) returns the number ofc’s appearances inC′.

4.4 Step 3: Building Decomposition Constraints
In this step, we build decomposition constraints to encode the
structure information provided by decomposition trees. Ifa
taskT can be decomposed inton subtasksst1, st2, . . ., stn,
we find that a subtasksti often provides some preconditions
of a method for subtasksti+1, making that method applica-
ble. As a result, this method can be applied to the next sub-
tasksti+1. Furthermore, we consider the constraint that the
parameters of a precondition (or effect) should be included
by the parameters of the action or method the precondition
(effect) belongs to. As a result, the decomposition constraints
DC can be built by the procedure as shown in Algorithm 2.

Algorithm 2 Build decomposition constraints:buildDecmp-
Constr(DTR)
Input: A set of decomposition trees with partially observed
states DTR;
Output: Decomposition constraints DC;
1: DC = ∅;
2: for each decomposition treedtr ∈ DTR do
3: for each two subtaskssti andstj in dtr do
4: if i < j then
5: for k = 1 to ni do
6: PRS= PARA(aik) ∩ PARA(mj);
7: generate a set of predicates GP using PRS;
8: generate a constraintc and add it to DC;
9: end for

10: end if
11: end for
12: end for
13: return DC;

In the fourth step of Algorithm 2, we consider two tasks
sti andstj that have the same parent andsti occurs earlier
thanstj . In the fifth step,ni is the number of actions to ac-
complish the subtasksti, which is denoted asai1, ai2, . . .,
aini

. In the sixth step,mj is the method which is applied
to the subtaskstj . In the seventh step, GP is generated by
GP = {p|PARA(p) ⊆ PRS}. In the last step, the generated
constraintc is: p ∈ GP→ (p ∈ ADD(aik) ∧ p ∈ PRE(mj))
With DC, we build weighted decomposition constraints WDC
by setting: WDC =calWeight(DC), which is similar to the
procedure of calculating WSC. WDC can be solved directly
by a weighted MAX-SAT solver.

4.5 Step 4: Building Action Constraints
To make sure that the learned action models are valid and rea-
sonable and could reflect some characteristics of real-world
action models, we need to further induce some constraints on
different actions. These constraints are imposed on individ-
ual actions which can be divided into the following two types

[Yanget al., 2007]:
(1). An action may not add afact (instantiated atom) which
already exists before the action is applied. This constraint can
be encoded asp ∈ ADD(a) ⇒ p 6∈ PRE(a), wherep is an
atom, ADD(a) is a set of added effects of the actiona, and
PRE(a) is a set of preconditions ofa.
(2). An action may not delete afact which does not exist be-
fore the action is applied. This constraint can be encoded as
p ∈ DEL(a) ⇒ p ∈ PRE(a), where DEL(a) is a set of delete
effects ofa.

These constraints are placed to ensure the learned action
models are succinct, and most existing planning domains sat-
isfy them. Nevertheless, our learning algorithm works per-
fectly without them.

These constraints compose the action constraints AC. We
denote aswmax the maximal weight of all the constraints in
WSC and WDC, and assignwmax as the weight of all con-
straints in AC. In this way, the weights of constraints in AC
are not less than the ones in WSC or WDC, which suggests
that the action constraints AC should be satisfied in many real
applications, compared to the other two kinds of constraints.

4.6 Step 5: Solving the Constraints

By using Steps 2-4, three kinds of weighted constraints are
built to encode the information of action models and method
preconditions. Before the constraints can be solved by a
weighted MAX-SAT solver, the relative importance of these
three kindsof constraints must be determined. To do this,
we introduce three new parametersβi (1 < i < 3) to con-
trol weights of each kind of constraints by:βi

1−βi

wi, where
0 ≤ βi < 1, 1 ≤ i ≤ 3, andwi is a weight of theith kind
of constraint. Notice that, by usingβi

1−βi

, we can easily ad-
just the weight from 0 to∞ by simply adjustingβi from 0 to
1. The weightwi will be replaced by βi

1−βi

wi, and the result-
ing weighted constraints are solved by a weighted MAX-SAT
solver. As a result, atrue or false assignment will be out-
putted to maximally express the weighted constraints. Ac-
cording to the assignment, the HTN model can be acquired
directly. For instance, if “p ∈ ADD(a)” is assignedtrue in
the result of the solver, thenp will be converted into an effect
of the actiona in the HTN model.

5 Experiment

5.1 Datasets

In this section, we performed experiments to evaluate our al-
gorithm. In the experiment, we use the HTN domains called
htn-blocks, htn-depotsandhtn-driverlogfor training and test-
ing, which are created as HTN domains based on the domains
blocks worldfrom IPC-22 anddepots, driverlogfrom IPC-
3 3 respectively. We generate 200 decomposition trees from
each domain for training the HTN model, and compare the
result to its corresponding handwritten HTN model.

2http://www.cs.toronto.edu/aips2000/
3http://planning.cis.strath.ac.uk/competition/

1/51/4 1/3 1/2 1/1
0

0.05

0.1

0.15

0.2

0.25

percentage of observations

to
ta

l e
rr

or
 r

at
e

← HTN−learner

← ARMS+

htn−blocks

1/51/4 1/3 1/2 1/1
0

0.05

0.1

0.15

0.2

0.25

percentage of observations

to
ta

l e
rr

or
 r

at
e

← HTN−learner

← ARMS+

htn−depots

1/51/4 1/3 1/2 1/1
0

0.05

0.1

0.15

0.2

0.25

percentage of observations

to
ta

l e
rr

or
 r

at
e

← HTN−learner

← ARMS+

htn−driverlog

Figure 2: the total error with respect to the percentage of observations

5.2 Evaluation Metric
To evaluate our algorithm, we define two kinds of errors:
soundness errorand completeness error. If a precondition
(or an effect) does not exist in the learned HTN model,
while it did in the original model, then we call this situa-
tion a soundness errorbecause this error will likely result
in situations where the learned method (or action) is applied
while the original one was not. If a precondition (or an ef-
fect of an action) exists in the learned model, while it is not
in the original one, then we call this situation acomplete-
ness errorbecause this error will likely result in a learned
method (or action) not being applied in situations where the
original one is applicable. We denote the soundness error
rate of an HTN model asEs, the completeness error rate as
Ec, and the total error rate of an HTN model asEt, where
Et = Es + Ec. Then we calculateEs andEc as follows:
Es =

∑
a Es(a) =

∑
a

soundness errors ofa

all possible conditions ofa , and

Ec =
∑

a Ec(a) =
∑

a
completeness errors ofa

all possible conditions ofa , where

a can be an action or a method.

5.3 Experimental Results
An alternative to HTN-learner also solving this problem
would be to learn the action models with ARMS[Yanget al.,
2007] and separately learn the method preconditions with an
existing algorithm such as CaMeL[Ilghami et al., 2005]. To
determine the importance of learning the action models and
method preconditions simultaneously, we ran an experiment
comparing HTN-learner against a hybrid system, that we call
it ARMS+, which first uses ARMS to learn the action mod-
els and then uses the method-based constraints to learn the
method preconditions.

The results of this experiment are shown in Figure 2. We
varied the percentage of intermediate states provided from1/5
to 1 and set eachβi to 0.5. In all cases, the error rate of HTN-
learner was less than that of ARMS+. This was expected,
because constraints about the action models may provide in-
formation that may be exploited to find more accurate method
preconditions, and vice versa. The differences are more sig-
nificant on the more complex domains such as htn-depots,
where combining the structural and action models provides
additional useful constraints that would not be generated from
the two separately. An increase in the number of intermedi-
ate states that are specified generally increases the accuracy

of both systems.
We now analyze the relative importance of the three types

of constraints, to show that all of them are needed to help im-
prove the learning result. Therefore, with respect to different
βi, we train an HTN model by setting the percentage of obser-
vations as 1/4, and calculate its total errorsEt. From Figure
3(a), we can see thatEt first decreases whenβ1 increases,
which means the state constraints should be more important
to improve the correctness. Then,Et increases and keeps
stable at a constant value, that is because whenβ1 reaches a
high enough value, the importance of the two other kinds of
constraints is reduced, and it plays a negative effect on our
learning accuracy. From Figure 3(b), we can see that,Et de-
creases at first but increases quickly whenβ2 increases. After
β2 reaches 0.5,Et becomes unstable with respect to differ-
ent domains. This shows that, since the importance of other
constraints decreases whenβ2 is high enough, exploiting the
information of decomposition constraints is not good enough
to extract useful rules to learn action models. The curve in
Figure 3(c) is similar to Figure 3(a), except that it is sharper
than the one in Figure 3(a) beforeβ3 reaches 0.5, which sug-
gests that the information from action constraints is stronger
than that from state constraints before 0.5.

To test the running time of HTN-learner, we set the per-
centage of observations as 1/4 and test HTN-learner with re-
spect to different number of decomposition trees. The testing
result is shown in Table 2. The running time of our algorithm
increases polynomially with the size of the input. To verify
our claim, we use the relationship between the size of input
and the CPU running time to estimate a function that could
best fit these points. We’ve found that we are able to fit the
performance curve with a polynomial of order 2 or order 3.
We provide the polynomial for fittinghtn-driverlog, which is
0.0110x2 − 0.0410x − 1.2000. We also observed that the
total error rate decreases when the size of the input increase,
and it remains below 0.12 in all cases where there are more
than 140 decomposition trees available.

6 Conclusion
In this paper, we have presented a novel algorithm HTN-
learner to learn the action models and method preconditions
of an HTN model. Given a set of partially observed decom-
position trees, HTN-learner builds a set of state, decomposi-
tion, and action weighted constraints, and solves them witha

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

0.3

β
1

to
ta

l e
rr

or
 r

at
e

← htn−blocks

← htn−depots
← htn−driverlog

(a)

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

0.3

β
2

to
ta

l e
rr

or
 r

at
e htn−blocks→

← htn−depots

← htn−driverlog

(b)

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

0.3

β
3

to
ta

l e
rr

or
 r

at
e

← htn−blocks

← htn−depots
htn−driverlog→

(c)

Figure 3: the total error with respect to (a)β1, (b)β2 or (c)β3

number htn-driverlog htn-blocks htn-depots
20 3 5 8
40 8 13 18
60 34 43 63
80 65 98 98
100 102 73 132
120 91 112 121
140 165 146 189
160 203 175 188
180 264 198 240
200 283 234 323

Table 2: column 1 is the number of decomposition trees,
columns 2-4 are cpu times (seconds)

MAX-SAT solver. The solution obtained is the HTN model
that best explains the observed decomposition trees.

We observed the following conclusions from our empirical
evaluation in 3 benchmark domains: (1) Simultaneously solv-
ing the constraints reduces error in the learned HTN-model
compared to first learning the action model and then learning
the method’s preconditions, (2) By imposing the three types
of constraints, we can effectively reduce the hypothesis space
of possible action models and method preconditions while us-
ing the input plan traces as an empirical basis, and (3) The
running time of our algorithm increases polynomially and the
error rate decreases with the size of the input. Our methods
can reduce human efforts in acquiring HTN models and scale
up planning in real-world applications.

Acknowledgment
We thank the support of Hong Kong CERG Grant HKUST
621307, NEC China Lab, and the National Science Founda-
tion (NSF 0642882).

References
[Amir, 2005] E. Amir. Learning partially observable deter-

ministic action models. InProceedings of IJCAI, pages
1433–1439, 2005.

[Blytheet al., 2001] J. Blythe, J. Kim, S. Ramachandran,
and Y. Gil. An integrated environment for knowledge ac-
quisition. InProceedings of IUI, pages 13–20, 2001.

[Borchers and Furman, 1998] B. Borchers and J. Furman. A
two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems.J. Comb. Optim., 2(4), 1998.

[Fikes and Nilsson, 1971] R. Fikes and N. J. Nilsson.
STRIPS: A new approach to the application of theorem
proving to problem solving.Artificial Intelligence Jour-
nal, pages 189–208, 1971.

[Hogget al., 2008] C. Hogg, H. Mũnoz-Avila, and U. Kuter.
HTN-MAKER: Learning HTNs with minimal additional
knowledge engineering required. InProceedings of AAAI,
pages 950–956, 2008.

[Ilghamiet al., 2005] O. Ilghami, H. Mũnoz-Avila, D. S.
Nau, and D. W. Aha. Learning approximate preconditions
for methods in hierarchical plans. InProceedings of ICML,
pages 337–344, 2005.

[McCluskeyet al., 2003] T. L. McCluskey, D. Liu, and R. M.
Simpson. GIPO II: HTN planning in a tool-supported
knowledge engineering environment. InProceedings of
ICAPS, pages 92–101, 2003.

[Nauet al., 2005] D. S. Nau, T. Au, O. Ilghami, U. Kuter,
H. Muñoz-Avila, J. W. Murdock, D. Wu, and F. Yaman.
Applications of SHOP and SHOP2.IEEE Intelligent Sys-
tems, 20:34–41, 2005.

[Nejatiet al., 2006] N. Nejati, P. Langley, and T. Konik.
Learning hierarchical task networks by obervation. InPro-
ceedings of ICML, pages 665–672, 2006.

[Reddy and Tadepalli, 1997] C. Reddy and P. Tadepalli.
Learning goal-decomposition rules using exercises. In
Proceedings of ICML, pages 278–286, 1997.

[Xu and Mũnoz-Avila, 2004] K. Xu and H. Mũnoz-Avila.
CaBMA: Case-based project management assistant. In
Proceedings of IAAI, pages 931–936, 2004.

[Xu and Mũnoz-Avila, 2005] K. Xu and H. Mũnoz-Avila. A
domain-independent system for case-based task decompo-
sition without domain theories. InProceedings of AAAI,
pages 234–240, 2005.

[Yanget al., 2007] Q. Yang, K. Wu, and Y. Jiang. Learning
action models from plan examples using weighted MAX-
SAT. Artificial Intelligence Journal, 171:107–143, Febru-
ary 2007.

