1

Learning Applicability Conditions in Al Planning from Part ial Observations

Hankz Hankui Zhuo, Derek Hao Hu
and Qiang Yang
Department of Computer Science

and Engineering, Hong Kong University of
Science and Technology, Hong Kong

{hankz,derekhh,qyan@-cse.ust.hk

Abstract

Al planning has become more and more important
in many real-world domains such as military appli-
cations and intelligent scheduling. However, plan-
ning systems require complete specifications of do-
main models, which can be difficult to encode, even
for domain experts. Thus, research on effective and
efficient methods to construct domain models or
applicability conditions for planning automatically
has become a hot topic for researchers. In this pa-
per, we review our previous workRVS, which can
learn the applicability conditions for planning un-
der STRIPS representations. Moreover, we provide
two extensions to OUARMS system L AMP, which

can learn complex action models in PDDL rep-
resentations with quantifiers and logical implica-
tions, andHTN- Lear ner, which can simultane-
ously learn method preconditions and action mod-
els in hierarchical task network (HTN) models. Our
experimental results show that the two proposed
algorithms could effectively learn complex action
models and HTN models, thus having the ability to
effectively acquire applicability conditions and re-
lationships between actions in Al planning.

Introduction

Héctor Munoz-Avila and Chad Hogg
Department of Computer Science
& Engineering,
Lehigh University
Bethlehem, Pennsylvania 18015, USA
{hem4, cmh204@Iehigh.edu

Because of the difficulty of manually providing applica-
bility conditions, some researchers have developed msthod
to learn action models from the complete state information
given before and after an action in some example plan traces.
For example, Shahaf, Chang and Arfshahafet al,, 2004
have proposed an algorithm call&multaneous Learning
and Filtering (SLAF) to learn more expressive action mod-
els using consistency-based algorithms.

The success of these learning systems all rely on the as-
sumption that fully intermediate states are available patin
However, there may be only partially observed state infor-
mation available in real-world planning applications, amd
some domains, we cannot always guarantee the state informa-
tion we had observed is correct. We provide two real-world
examples to support our motivation for learning appliaapbil
conditions from partial observations.

In many operating systems, batch commands consist of the
name of each command along with some partial information
about directory location, structure and content. If we view
such an application as a planning domain, the batch command
is a list of actions. We can easily get the action name and its
parameters (defined as action schema onwards) of each action
by reading the system manual. However, we cannot get the
full intermediate state information between these comrmeand
by reading the batch command file alone. This corresponds
to an example of plan traces with partial intermediate state
formation. In this domain, we don’t have the specification of
action models, but we can easily get a large number of batch

Al planning has become more and more important in many.ommands, viewed as plan examples, together with partial
domains such as military applications and intelligent sicite si5te information.

ing. However, planning systems require complete domain Another application is activity recognitiod, which is

mo_dels as input, which are difficult to acquire, even f(_)r d.o'very importantin pervasive computing, machine learning) an
main experts. Nowadays, new planning domain specificatiof) ira|ess sensor networks. Activity recognition aims togc
languages like PDDIFox and Long, 2003and HTN(Erol et nize the actions and goals of one or more agents from a series

g!i! 19;1_34 make"'t][nozje d|ff|.cult to s?eC|fy aptphhcablhty CON- ¢ observations on the agents’ actions and the environrhenta
iions- manually Tor domain €Xperts, SINCe tNese New repree,, qitions. One scenario is sensor-based activity retiogni

ﬁﬁntatlonfr:nvollv?_the F]J_sagetof unlvterskal an((jj exg:enll;lalhgrh [Hu and Yang, 2008 where we could use the sensor readings
Mers, or the relaionsnip bEween tasks and SUDIASKSSEI Ne;, o pervasive environment to understand what activities ar

complex relationships are difficult to encode even for humary iy on by collecting a large number of sensor reading se-
when facing a rather complicated domain. quences and perform activity recognition on these seqsence

to get the corresponding activity sequences. These activit

1We use the term “applicability conditions” instead of thermo : .)
sequences can act as input of action model learning algo-

standard term “action models” since the HTN models requiee t
specification of method preconditions, as well as actionetsfbr

each action. 2http://en.wikipedia.org/wiki/Activityrecognition

rithms. However, due to the instability and noisy nature ofimental results to demonstrate the effectiveness of theseth

sensor readings, the activities recognized by activitpge¢ algorithms and show thatAMP andHTN- Lear ner could

tion algorithms may have some errors. Thus, the state inforindeed enhance thexpressiveness explore theelationship

mation in the activity sequences learned may be sometimdsetween tasks. Next, we discuss some related work on action

incorrect. model learning. Finally, we conclude this paper and discuss
Our previous work in learning action models, call@VB some possible directions for future work.

[Yang et al, 20078, learns STRIPS action models from

plan traces without or only with partial intermediate state2 | earning Applicability Conditions

observations under a STRIPS representation. Such a model -

seems to satisfy the real-world requirement where state ot%-1 Definitions

servation may be incomplete or incorrect. However, as weA planning domain is defined a8 = (S, A,), whereS

mentioned before, the development of models like PDDL,is the set of statesd is the set of action models; is the

which has quantified formulas and logical implications, anddeterministic transition functios x A — S. Each action

HTN, which has task decomposition structures, has posed outodel in A is composed of three parf&ikes and Nilsson,

new challenges for action model learning tasks. Algorithms1971]: an action name with zero or more arguments, a pre-

that could learn more expressive applicability conditians condition list which is a list of formulas that must hold in a

needed. In this paper, we would briefly describe two new alstate for the action to be applicable, an add list and a delete

gorithms for learning applicability conditions that coslolve list that are sets of atoms. A planning problem can be defined

the aforementioned challenges. asP = (X, so, g), Wheres, is an initial state, and is a goal
The first algorithmLAMP, aims to learn action models for state. A solution to a planning problem is an action sequence
domains that can be expressed using a PDDL-like represefia, a1, . .., a,) called a plan, which makes a projection from

tation, or more precisely, in terms of quantifiers and logica sy to g. Eacha,; is anaction schemaomposed of an ac-
implications. LAMP aims to enhance the “expressibility” of tion name and zero or more arguments. Furthermopiam
action models we learn by supporting the usage of quantifiersaceis defined ag" = (s, ag, s1,a1,- . -, Sn, an, g), Where
and implications in the final output. For instance, if theme a s4, ..., s,, are partial intermediate state observations that are
differentbriefcasesn a briefcasé domain where briefcases observed. They are called “partial” because they are atlowe
have different priorities to be moved away from a startingto be empty. The problem of learning applicability condiso
place. We can model the actionovein PDDL as follows. can be stated as follows: given a set of plan traCesutput a

4 set of applicability conditions for such plan traces to bkeab

action: move(?cl - case ?I1 ?I2 - location) to proceed.
pre: (:and (forall ?c2 - case . .
(imply (prior 2c2 2c1)(not (at ?¢2 211)))) 2.2 Learning STRIPS Action Models ARMS)
(at ?cl ?I1)) We first briefly review our previous workRVS [Yanget al,,
effect: (tand (at ?cl ?12) (not (at ?c1 ?I11))) 2007H. ARMS proceeds in two phases. In phase one of the

That is. if we want to move the casé from a location1 to algorithm, ARMS finds frequent action sets f_rom pla_ns that
12, c1 should be atl and every case2 priors tocl should share a common set of parameters. In additAfRYS finds .
some frequent predicate-action pairs with the help of the in

not be atl. After the actiormove c1will be atl2 instead of 2l state and the qoal state. These predicate-action mig@s
atll. Here, we need universal quantifiers as well as Iogicaf L 9 : P . o
us an initial guess on the preconditions, add lists and elelet

implications in the precondition part of the action to peety Iigts of actions in this subset. These action subsets amd pai

L%?;%Zi?};?:ﬁ domain and to compress the action models N&te used to obtain a set of constraints that must hold in order
The second alaorithnHTN: Lear ner . aims to learn an- to make the plans correct. In phase two, we transform the
9 ' ! P~ constraints extracted from the plans into a weighted SAT rep

plicability conditions from given structural traces of HTN r&sentatior{Moskewiczet al, 2001, solve it, and produce

models. BeS|d_es_ I_earnmg action models which are needean action model from the solution of the SAT problem. The
to represent primitive tasks in HTNs, we can also learn the . ! .
process iterates until all actions are modeled.

preconditions of HTN methods, thus providing some under ; P .)
standings on the relationship between tasks and subtaskts The algorithm starts by initializing a set of explained ac

AN g ions and a set of action schemata yet to be explained. Sub-
Such a perspective is different frobAMP as it is not fo- L . . .
cusing on enhancing thexpressibilitybut understanding the sequently, it iteratively builds a weighted MAX-SAT repre-

relationshipbetweertasksat different levels of abstraction. S?Q;Egholﬁgifgh/seeﬁ' tgzﬁndtlLn:wa‘ir]:ﬁglrggtiscx(t)gf\ airre]ztgx-
In the following, we first briefly review th&RMS algo- P X ' F

rithm and then introduceAVP andHTN- Lear ner , respec- mediate stage, the partially learned action schematadeese

; : g in size monotonically ARVS terminates when all actions in
tively. After that, we would provide some preliminary exper the example plans are learned. As a result, the actions of all

3http://www.informatik.uni-freiburg.detkoehler/ipp/pddi- plans examples are learned in a left-to-right sweep if we as-
domains.tar.gz sume the plans begin on the left and end on the right side,
“Notice that a symbol with a prefix “?” indicates that the syinbo Without skipping any incomplete actions in between. Inter-
is a variable; e.g. “?c1” suggests that “c1” is a variablé tam take ~ ested readers please refef¥anget al, 20074 for a more
on certain constants as values. detailed description of thaRMS algorithm.

Initial state sy:
(onC A) (stack_from_table A B)

(ontable A) 4l
(ontable B) makestac}:jrnm_labié‘;iter(A BO)

2.3 Learning Complex Action Models LAMP)

Compared toARMS, in this work, our algorithmL AMP at-
tempts to learn more complex action models that support the
use of quantifiers and logic implications, defined in PDDL
language for simplifying previous STRIPS representations
and in some situations even increasing the expressivefiess o
the possible constructs. Similar ARMS, the learning prob-
lem of LAMP can be stated as, given a set of plan traEes
LAMP outputs a set of complex action models.

Each complex action model can be described as a set of
formulas, e.g., the action “move” given in Section 1 can be
described by the following formulas:

ID | formulas

1 | V7?c2,. ((move ?cl ?11 ?12) (prior 2c2 ?cli)
— ﬁ(at ?2c27?011 I))
2 | Vi. ((move ?cl ?I1 ?12 i} (at ?cl ?I1 1))

3 | Vi. ((move ?cl ?11 ?12 i}~ (at ?cl ?12 i+1))

4 | Vi. ((move ?cl ?11 ?12 i}» —(at ?2c1 ?I11i+1))

(clear C)
(clear B) /

(handempty) p / |

Partially observed (clean A C) . (pick-up A) 5 (stack AB) ¢

states: s, Sy, ...

Goal state: g

maké/cleanfinki‘t‘(A\C)

So (unstaék CA) 5, (put-downC)

Figure 1: input: an example decomposition tree

level task. All intermediate level subtasks are also futly i
stantiated, and all preconditions of actions and prectondit
of methods are satisfied. The roots of the trees correspond to
the tasks iril".

Our learning problem can be described as follows: given
as input a list of decomposition trees with partially observ
states between the leaves of each decomposition tree, our

where, (move ?cl ?I1 ?I2 i) is an atom indicating that thetearning algorithm outputs an HTN model including the
action (move ?cl ?I1 ?I2) is executed in step i of a planion modelsandmethod preconditionsAn examplé of the
trace when the atom isue, likewise for other atoms. The input is shown in Figure 1. Figure 1 is an example of a de-
first formula describes the precondition “(imply (prior ?c2 composition tree with initial state or partially observetei-
?cl)(not (at ?c2 ?11)))" of action “move”. Other formulas mediate states (not shown in the figure) between leaves. The

can be explained similarly. Thus, in order to learn complexoutput of our algorithnHTN- Lear ner is the action models
action models, we generate all the possible formulas, whicnd method preconditions.

are calleccandidate formulagto encode all the possible com-

To learn action models and method preconditions,

plex action models. Since such candidate formulas could bern. | ear ner first builds the various constraints from the
very large, which makes it difficult to process, we constein gpserved state information, including state constraides,

logic implication with the form ofp — ¢, wherep andq can

composition constraints and action constraints, whictdare

be any predicate which probably appears in a complex actiogriped as follows.

model. In this way, the number of candidate formulas are

generally small since the number of actions and predicates tate constraint In a decomposition tree, if a predicate fre-

small, e.g., there are only 3 actions and 3 predicates in the
domainbriefcase

GenerallyL AMP can be described in four steps. Firstly, we
encode the input plan traces, including observed states and
actions (represented as state transitions), into prapoailt
formulas. Secondly, we generate candidate formulas, decor
ing to the predicate lists and specific correctness conssrai
Thirdly, we build a Markov Logic Network (MLNJDomin-
goset al, 2004 by learning the corresponding weight of each
formula to select the most likely subset from the set of can-
didate formulas. Finally, we convert this subset into thalfin
action models.

2.4 Learning Action Models and Method
Preconditions HTN- | ear ner)

A Hierarchical Task Network (HTN) planning problem is de-
fined as a quadrupléty, T, M, A), wheres is an initial state
which is a conjunction of proposition®,is a list of tasks that
need to be accomplishedl is a set oimethodswhich spec-
ify how a high-level task can be decomposed into a totally
ordered set of lower-level subtasks, afids a set ofactions
which corresponds to the primitive subtasks that can be di
rectly executed. Aolutionto an HTN problentsg, T, M, A)

quently appears before an action is executed, and its pa-
rameters are also parameters of the action, then the pred-
icate is probably a precondition of the action. Likewise,

if a predicate frequently appears before a method is ap-
plied, it is probably a precondition of the method; if a
predicate frequently appears after an action is executed,
it is probably an effect of the action. In other words,
these frequent predicates provide useful information for
our learning target. This information will be used in the
form of state constraintg our learning process.

decomposition constraint Decomposition constraints ex-

tracted from decomposition trees to encode the structure
information. If a taskl" can be decomposed intosub-
taskssty, sta, ..., st,, we find that a subtask:; of-

ten provides some preconditions of a method for subtask
st;+1, making that method applicable. As a result, this
method can be applied to the next subtask . Fur-
thermore, we consider the constraint that the parameters
of a precondition (or effect) should be included by the

Sclean’ is a task to move off all the blocks above ‘?x’,
and ‘makeclearnit’ is a method to be applied to ‘clean'.
‘stack from_table’ is a task to stack ‘?x’ on ‘?y’ when “?x’ is on

is a list ofdecomposition treesn a decomposition tree, a leaf the table, and ‘makestadkom_tableiter is a method to be applied

node is a fully instantiated action, and the set of actiondxea
directly executed from the initial state to accomplish thetr

to

‘stackfrom_table’. ‘pick-up’, ‘put-down’, ‘stack’ and ‘unstack’
are four actions to pick up, put down, stack and un-stack ekblo

parameters of the action or method the precondition (efparts inbold suggest that they should be added but not ex-

fect) belongs to.
action constraint To make sure that the learned action mod-

els are valid and reasonable and could reflect some char,

acteristics of real-world action models, we need to fur-
ther induce some constraints on different actions. Thes
constraints are imposed on individual actions which ca
be divided into the following two typekYang et al,,

h

ist in the learned action models; partsifalic suggest that

they should be deleted compared to the hand-written action

odels, but they are added in the learned action models.
he same meaning is also used in the results A¥P and

IéITN-I ear ner.

By runningLAMP, we can learn action models as show in
e following.

20074: (1) An action is often required not to add a
fact (instantiated atom) which already exists before thg
action is applied. (2) An action is also required that it
should not delete gact which does not exist before the
action is applied.

For state constraint@nd decomposition constraintsve as-
sign the weight of each constraint as the frequency of its ap
pearance in decomposition trees. [Bation constraintsve
assign the weight of each constraint as the maximal weigh
of all the weights oftate constraintanddecomposition con-
straintg making action constraints to be satisfied maximally,
which suggests that the learned action models will be close
real-world action models as much as possible.
With these constraints, all of which are associated with
weights HTN- | ear ner builds a set of clauses and view it as

a weighted maximum satisfiability problem, and then solves

the problem by a weighted MAX-SAT solM&orchers and
Furman, 1998 After that,HTN- | ear ner converts the so-
lution of the MAX-SAT problem to the HTN model including
a set of action models and a set of HTN method precondition
that best explain the set of observed decomposition trees.

3 Experiment

To demonstrate the relationship of the learning results o
these three learners, we extract from the dorbiioks world
6 30 plan traces for runningRVS andLAVP respectively, 30
decomposition trees for runnikff N- | ear ner . The results
are given below.
By runningARMS, we can learn STRIPS action models of

the domairblocks worldas shown in the following.

(:action pick-up (?x - block)

:precondition (an¢tlear ?x)(ontable ?xjhandempty))

-effect (and (not (ontable ?x{hot (clear ?x))(clear ?x)

(not (handempty))(handemptyholding ?x)))
(:action put-down (?x - block)

:precondition (holding ?x{clear ?x)
.effect (and(not (holding ?x))(clear ?x)

(handempty(not (clear ?x)jontable ?x))

(:action stack (?x - block ?y - block)
:precondition (and (holding ?¢dlear ?y)(ontable ?y)
.effect (and(not (holding ?x)) (not (clear ?y))

(clear ?xfhandempty)(not(ontable ?y)on ?x ?y)))
(:action unstack (?x - block ?y - block)
:precondition (andon ?x ?y)(clear ?x) (handempty))
-effect (and(holding ?x) (clear ?y)(not (clear ?x))

(not (handempty)pn ?x ?y)(not (on ?x ?y)))

Notice that, compared to the hand-written action models

Shttp://www.cs.toronto.edu/aips2000/

(:action pick-up (?x - block)
:precondition (and (clear 2¢jandempty)(holding ?x)
-effect (and(not(handempty))(not(clear Tkplding ?x)
(when (ontable ?x)(not (ontable ?x)))
(forall (?y-block)(when(on ?x ?y)(clear ?y)))
(forall (?y-block)(when(on ?x ?y)(holding ?y)))
(forall(?y-block)(when(on ?x ?y)(not(on ?x ?y)))))
- (:action put-down (?x - block)
:precondition (holding ?x{clear ?x) (handempty)
t:effect (and (not (holding ?x{glear ?x)

(handempty) (ontable ?x)

(forall (?y-block)(when (not(clear ?y))(ontable ?x))

(forall (?y-block)(when (clear ?y)(on ?x ?y)))
(:action stack (?x - block ?y - block)

:precondition (and (holding ?Xlear ?y)(handempty)
.effect (and(not (holding ?x))(not (clear ?y)jclear ?x)

(handempty) (on ?x ?y)(when (clear ?y)(on ?x ?y))

(when (ontable ?y)(on ?x ?y))

(when (ontable ?y)(not (clear ?y)))

(when (not(clear ?y))(ontable ?x)))

s (:action unstack (?x - block ?y - block)

:precondition (andclear ?x)(holding ?x{handempty))
.effect (and(not(handemptyhot(clear ?x))Yontable ?y)
(clear ?x)(holding ?x)(when(on ?x ?y)(clear ?y))

(when(ontable ?y)(clear ?y))

(when(ontable ?x)(not(ontable ?x)))

(when(on ?x ?y)(not(on ?x ?y)))))

Compared to the learning result 6RMS, LAMP can learn
action models with quantifiers (and conditional effects)l an
implications, e.g., “(forall (?y-block)(when(on ?x ?yigar
?y)))” in the action “pick-up”. When these complex action
models are learned, we observe that the action models “pick-
up” and “unstack” are quite similar to each other. Actually,
merging this two action as one action, named as “pick” or
others, is reasonable in the domhlocks world since we do

not need to concern where a block is before we pick it up.
That is to say, the similarities, specifically the completiat
models learned, give us chances to merge actions together,
reducing the action number as a result.

By runningHTN- | ear ner with decomposition trees as
input, we can learn HTN method preconditions and action
models. In the following, we only show one learned HTN
method to give an intuitive idea about wH4EN- | ear ner
learns because of lack of space.

(:method makestackom_tableiter

:parameters (?x - block ?y - block ?z - block)

‘task (stackfrom_table ?x - block ?y - block)

:preconditions (and (ontable ?(glear ?z) (holding ?z
(clear ?y)(on ?z ?x)

:subtasks (and (clean ?x ?z) (pick-up ?x) (stack ?x Py))

In the HTN method, “preconditions” are what we learned,

D

f

while “task” and “subtasks” are assumed to be known beforestraint is. Weights can be learned using a variety of methods

hand in our algorithHTN- | ear ner . e.g. convex optimization of the likelihood, iterative sogl
and margin maximization. MLNs have been applied to sev-
4 Related Work eral real world applications with great success. For irstan
)) [Domingos, 200bproposes to apply Markov logic to model
4.1 Action Model Learning real social networks, which evolve in time with multiple g

Recently, some researchers have proposed various methoafsarcs and nodes and are affected by the actions of multi-
to learn action models from plan traces automatically. Theple players{Poon and Domingos, 20Dproposes a joint ap-
first one is to learn action models from plan traces with fullproach to perform information extraction using Markov ogi
intermediate state informatiofBenson, 1995; Wang, 1995; and existing algorithms, where segmentation of all records
Schmill et al, 2000; Pasulat al, 2007. [Schmill et al, and entity resolution are performed together in a single-int
2004 learns operators with approximate computation in rel-grated inference process.

evant domains by assuming that the world is fully observ-

able. [Wang, 1995 describes an approach to automatically4.3 HTN learning

learn planning operators by observing expert solutiore§ac \ye gre focusing on a variant of HTN planning called Ordered
and refine the operators through practice in a learning-bytask pecompositiofNauet al, 2009, which is also the most
doing paradigm. [Benson, 199bpresent methods by which common variant of HTN planning by far. In this variant the
an agent learns action models_ from its own experience anﬂlanning system generates a plan by decomposing tasks in
from its observation of a domain expert. It exploits the ideayye order they were generated into simpler and simpler sub-
of concept induction in first-order predicate logic of induc tasks until primitive tasks are reached that can be perfdrme
tive logic programming (ILPJMuggleton and Raedt, 1984 jrectly. Specifically, for each non-primitive task, thepher
which allows it to utilize ILP noise-handling techniquesileh cjgoses an applicable method and instantiates it to decom-
learning without losing representational power. What theyysse the task into subtasks. When the decomposition process
learn are STRIPS modéfskes and Nilsson, 1971 [Pa- eaches a primitive subtask, the planner accomplishes it by
sulaet a_l.,_ 2007 show how to learn stochastic actions with applying its corresponding action in the usual STRIPS fash-
no conditional effects[Holmes and Jr., 20Q4models syn- jon The process stops when all non-primitive tasks are de-

thetic items based on experience to construct action modelgomposed into primitive subtasks, and outputs an action se-
[Walsh and Littman, 200%roposes an efficient algorithm for quence (i.e. a plan) as a solution.

learning action schemas for describing Web services. Among [lighamiet al, 2005; Xu and M@oz-Avila, 2003 propose

these methods, one of their limitations is all the intermedi ager and lazy learning algorithms respectively, to lehen t
ate observations need to be known. However, in many reaEreconditions of HTN methods. These systems require as in-
applications such as activity recognition from wireless-se i the hierarchical relationships between tasks, themcti
sor networks, biological applications of Al Planning, iht(? models, and a complete description of the intermediatestat
gent user interfaces ano_l Web serw{:@hallabgt al, _2004' and learn the conditions under which a method may be used.
Kuteret al, 2009, sometimes we cannot obtain full interme- |51 uses means-end analysis to learn structure andpreco
diate state |m.‘0rmat|o.n.) ditions of the input plans by assuming that a model of the
SLAF [Amir, 2005; Shahaf and Amir, 200@resents a {55k in the form of Horn clauses is givitvejatiet al, 2008.
tractable, exact solution for the problem of identifying ac [yanget al, 20074 presents a probabilistic model for unsu-
tions’ effects in partially observable STRIPS domainsel r heryised learning of HTN methods from action sequences.
sembles version spaces and logical filtering and identifles a;TN-MAKER also learns structures albeit assuming that a
the models that are consistent with observations. It m@isita mode| of the tasks is given in the form of preconditions and
and outputs a relational logical representation of all POSS gffects for the taskfHogg et al, 2009. All of these works

ble action-schema models after a sequence of executed ag;ye in common that they assume complete intermediate state
tions and partial observations. To improve the performancentormation to be given together with the input traces.
[Shahatfet al., 2004 proposes an efficient algorithm to learn

preconditions and effects of deterministic action modéts. 5 C lusi
many real-world planning applications, however, existnt onclusion

quantifiers may appear in the effects of actions and uniersan this paper, we have given an overview on several novel ap-
quantifiers may appear in the preconditions of some actiongroaches to learn applicability conditions in Al Planningrh
as shown in the examples ahove. partial observations, including STRIPS action models, com

. plex action models with quantifiers and logical implicagon
4.2 Markov Logic Networks (MLNs) as well as HTN models including action models and method
The Markov Logic Network (MLN)Richardson and Domin- preconditions, from a set of observed plan traces or decom-
gos, 200bis a powerful framework that combines probability position trees where we can support partially observable in
and first-order logic with statistical learning. An advagegaf termediate states. We list several possible directionghwhi
MLNSs over first order logic is in its ability to “soften”thece we could follow for our future work. Our curremtAMP al-
straints; e.g., when a world violates a formula in a knowkedg gorithm enumerates all possible preconditions and efexts
base, it is less probable, but not impossible. Thus, eaeh forcording to our specific correctness constraints. In therfytu
mula is associated withweightto reflect how strong the con- we wish to add some form of domain knowledge to further

filter out some “impossible” candidate formulas beforehandKuteret al, 2003 Ugur Kuter, Evren Sirin, Bijan Parsia,
thereby making the algorithm much more efficient. Another Dana Nau, and James Hendler. Information gathering dur-
direction we want to explore is to extend the action model ing planning for web service compositiodournal of Web
learning algorithm to more elaborate action represemtatio Semantics (JWSpages 183—-205, 2005.

languages that explicitly represent resources and fumgtio [Moskewiczet al, 2001 M. W. Moskewicz, C. F. Madigan,
We will also apply.our algqrith_ms to more challenging tasks v Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
in real world planning applications. efficient sat solver. IfProceedings of DAC’012001.

Acknowledgment [Muggleton and Raedt, 19945tephen Muggleton and

Luc De Raedt. Inductive logic programming: Theory and
We thank the support of Hong Kong CERG Grant HKUST methods.Journal of Logic Programmingl994.

Scz)r%?gr;’nlt\lll\zlcc): ﬁfgg%ézggaggnzd the National Science Founda[_Nauet al, 2005 D. S. Nau, T. Au, O. llghami, U. Kuter,
' ' H. Munoz-Avila, J. W. Murdock, D. Wu, and F. Yaman.
References Applications of SHOP and SHOPZ2EEE Intelligent Sys-

. . . _ tems 20:34-41, 2005.
[Amir, 2009 E. Amir. Learning partially observable deter-

ministic action models. IRProceedings of IJCAI'05ages [Nejatiet al, 2004 N. Nejati, P. Langley, and T. Konik.
1433-1439, 2005. Learning hierarchical task networks by obervationPro-

ceedings of ICML'0ppages 665-672, 2006.
[Benson, 199F Scott Benson. Inductive learning of reactive g brag
action models. IProceedings of ICML'951995 [Pasuleet al, 2007 H. M. Pasula, L. S. Zettlemoyer, and
[Borch q F. 19D®. Borch 4] F A L. P. Kaelbling. Learn_ing symbqlic models of stochastic
?rco eﬁaig o l;rcrpz?'or'thm. fo(r)rl(\:A:)r(S SaXT a.ndurrganﬁted domainsJournal of Artificial Intelligence ResearcR007.
l\\;IVAXFiSAT préblems%. IComb. Optim.2(4) 1998YV '9 [Poon and Domingos, 200H. Poon and P. Domingos. Joint

) i inference in information extraction. IRroceedings of
[Domingoset al, 2004 P. Domingos, S. Kok, H. Poon, AAAI'07, pages 913-918, 2007.

M. Richardson, and P. Singla. Unifying logical and sta- . . .
tistic;?a?rlsgrocaeldings QngiAl,agég%_Oglca and sta [Richardson and Domingos, 2008atthew Richardson and

.) o . Pedro Domingos. Markov logic networkdachine Learn-
[Domingos, 200b P. Domingos. Mining social networks for ing, 62(1-2):107—136, 2006.

iral marketing.lIEEE Intelligent System&0(1), 2005. . .
Vi 9 '9 ystem20(1) [Schmillet al, 2000 M. D. Schmill, T. Oates, and P. R. Co-

[Eroletal, 1999 Kutluha.\n Erol, James A. Hendler, and ~ o | earning planning operators in real-world, partially
Dana S. Nau. Umcp: A sound and complete procedure opseryaple environments. IRroceedings of AIPS'Q0
for hierarchical task-network planning. Rroceedings of 2000.

AIPS’'94 pages 249-254, 1994. . .
4 pag [Shahaf and Amir, 20d6Dafna Shahaf and Eyal Amir.

[Fikes and Nilsson, 1971R. Fikes and N. J. Nilsson. "7 o4rning partially observable action schemasPioceed-
STRIPS: A new approach to the application of theorem ings of AAAI'06 pages 913-919, 2006.

proving to problem solving.Atrtificial Intelligence Jour-
nal, pages 189-208, 1971, [Shahatet al, 2004 Dafna Shahaf, Allen Chang, and Eyal

. Amir. L i tially ob bl ti dels: Effi-
[Fox and Long, 200B Maria Fox and Derek Long. PddI2.1: mir._-earning parialy observayle acton mode's !

. : . cient algorithms. IrProceedings of AAAI'082006.
An extension to pddl for expressing temporal planning do- , .
mains.J. Artif. Intell. Res. (JAIR)20:61-124, 2003. [Walsh and Littman, 2048Thomas J. Walsh and Michael L.

Littman. Efficient learning of action schemas and web-
[Ghallabet al, 2004 Mark Ghallab, Dana Nau, and Paolo - e : ,
Traverso. Automated Planning: Theory and Practice service descr|pt|0r_ls. Iﬁroceedmg_s of AAAI 0’&00_8'
Morgan Kaufmann Publishers, 2004. [Wang, 1995 Xuemei Wang. Learning by observation and

[Hogget al, 2008 C. Hogg, H. Miioz-Avila, and U. Kuter. practice: An incremental approach for planning operator

HTN-MAKER: Learning HTNs with minimal additional acqwsm?n. InP_roceedmgs of ICML95199~5' .
knowledge engineering required. IRroceedings of [Xuand Muoz-Avila, 200§ K. Xu and H. Muoz-Avila. A
AAAI'08, pages 950-956, 2008. domain-independent system for case-based task decom-

[Holmes and Jr., 2004M. P. Holmes and C. L. I. Jr. Schema position without domain theories. IRroceedings of
learning: Experience-based construction of predictive ac AAAI0S, 2005.)) o
tion models. InAdvances in NIPS'Q2004. [YaPnget ?_'-, 20074 Qiang Yar;]?, Ront% P(;':m,tan(g Smnfo Jlalhn

[Hu and Yang, 2008 Derek Hao Hu and Qiang Yang. an. Learning recursive htn-me 0_ structures for plan-
CIGAR: Concurrent and interleaving goal and activity gllg%nirl\n Z;\Odcﬁzglrrr]]?r?gg(f)(t)ge ICAPS-07 Workshop on Al
recognition. InProceedings of AAAI'08008. 9 _ '

[lighamiet al, 200§ O. lighami, H. Muhoz-Avila, D. S. [Yanget al, 20074 Qiang Yang, Kangheng Wu, and Yun-

Nau, and D. W. Aha. Learning approximate precondi- fei Jiang. Learning action m_o_dgls from.plan examples us-
tions: for me.thods in hierarchical plans. Rroceedings ing weighted MAX-SAT. Artificial Intelligence Journal

of ICML'05, 2005, 171:107-143, February 2007.

