
Learning Applicability Conditions in AI Planning from Part ial Observations

Hankz Hankui Zhuo, Derek Hao Hu
and Qiang Yang

Department of Computer Science
and Engineering, Hong Kong University of

Science and Technology, Hong Kong
{hankz,derekhh,qyang}@cse.ust.hk

Héctor Muñoz-Avila and Chad Hogg
Department of Computer Science

& Engineering,
Lehigh University

Bethlehem, Pennsylvania 18015, USA
{hem4, cmh204}@lehigh.edu

Abstract

AI planning has become more and more important
in many real-world domains such as military appli-
cations and intelligent scheduling. However, plan-
ning systems require complete specifications of do-
main models, which can be difficult to encode, even
for domain experts. Thus, research on effective and
efficient methods to construct domain models or
applicability conditions for planning automatically
has become a hot topic for researchers. In this pa-
per, we review our previous workARMS, which can
learn the applicability conditions for planning un-
der STRIPS representations. Moreover, we provide
two extensions to ourARMS system,LAMP, which
can learn complex action models in PDDL rep-
resentations with quantifiers and logical implica-
tions, andHTN-Learner, which can simultane-
ously learn method preconditions and action mod-
els in hierarchical task network (HTN) models. Our
experimental results show that the two proposed
algorithms could effectively learn complex action
models and HTN models, thus having the ability to
effectively acquire applicability conditions and re-
lationships between actions in AI planning.

1 Introduction
AI planning has become more and more important in many
domains such as military applications and intelligent schedul-
ing. However, planning systems require complete domain
models as input, which are difficult to acquire, even for do-
main experts. Nowadays, new planning domain specification
languages like PDDL[Fox and Long, 2003] and HTN[Erol et
al., 1994] make it more difficult to specify applicability con-
ditions1 manually for domain experts, since these new repre-
sentations involve the usage of universal and existential quan-
tifiers, or the relationship between tasks and subtasks. These
complex relationships are difficult to encode even for human
when facing a rather complicated domain.

1We use the term “applicability conditions” instead of the more
standard term “action models” since the HTN models require the
specification of method preconditions, as well as action models for
each action.

Because of the difficulty of manually providing applica-
bility conditions, some researchers have developed methods
to learn action models from the complete state information
given before and after an action in some example plan traces.
For example, Shahaf, Chang and Amir[Shahafet al., 2006]
have proposed an algorithm calledSimultaneous Learning
and Filtering (SLAF) to learn more expressive action mod-
els using consistency-based algorithms.

The success of these learning systems all rely on the as-
sumption that fully intermediate states are available as input.
However, there may be only partially observed state infor-
mation available in real-world planning applications, andin
some domains, we cannot always guarantee the state informa-
tion we had observed is correct. We provide two real-world
examples to support our motivation for learning applicability
conditions from partial observations.

In many operating systems, batch commands consist of the
name of each command along with some partial information
about directory location, structure and content. If we view
such an application as a planning domain, the batch command
is a list of actions. We can easily get the action name and its
parameters (defined as action schema onwards) of each action
by reading the system manual. However, we cannot get the
full intermediate state information between these commands
by reading the batch command file alone. This corresponds
to an example of plan traces with partial intermediate statein-
formation. In this domain, we don’t have the specification of
action models, but we can easily get a large number of batch
commands, viewed as plan examples, together with partial
state information.

Another application is activity recognition2, which is
very important in pervasive computing, machine learning and
wireless sensor networks. Activity recognition aims to recog-
nize the actions and goals of one or more agents from a series
of observations on the agents’ actions and the environmental
conditions. One scenario is sensor-based activity recognition
[Hu and Yang, 2008], where we could use the sensor readings
in a pervasive environment to understand what activities are
going on by collecting a large number of sensor reading se-
quences and perform activity recognition on these sequences
to get the corresponding activity sequences. These activity
sequences can act as input of action model learning algo-

2http://en.wikipedia.org/wiki/Activityrecognition



rithms. However, due to the instability and noisy nature of
sensor readings, the activities recognized by activity recogni-
tion algorithms may have some errors. Thus, the state infor-
mation in the activity sequences learned may be sometimes
incorrect.

Our previous work in learning action models, calledARMS
[Yang et al., 2007b], learns STRIPS action models from
plan traces without or only with partial intermediate state
observations under a STRIPS representation. Such a model
seems to satisfy the real-world requirement where state ob-
servation may be incomplete or incorrect. However, as we
mentioned before, the development of models like PDDL,
which has quantified formulas and logical implications, and
HTN, which has task decomposition structures, has posed out
new challenges for action model learning tasks. Algorithms
that could learn more expressive applicability conditionsare
needed. In this paper, we would briefly describe two new al-
gorithms for learning applicability conditions that couldsolve
the aforementioned challenges.

The first algorithm,LAMP, aims to learn action models for
domains that can be expressed using a PDDL-like represen-
tation, or more precisely, in terms of quantifiers and logical
implications. LAMP aims to enhance the “expressibility” of
action models we learn by supporting the usage of quantifiers
and implications in the final output. For instance, if there are
differentbriefcasesin a briefcase3 domain where briefcases
have different priorities to be moved away from a starting
place. We can model the actionmovein PDDL as follows.
4

action: move(?c1 - case ?l1 ?l2 - location)
pre: (:and (forall ?c2 - case

(imply (prior ?c2 ?c1)(not (at ?c2 ?l1))))
(at ?c1 ?l1))

effect: (:and (at ?c1 ?l2) (not (at ?c1 ?l1)))

That is, if we want to move the casec1 from a locationl1 to
l2, c1 should be atl1 and every casec2 priors toc1 should
not be atl1. After the actionmove, c1 will be at l2 instead of
at l1. Here, we need universal quantifiers as well as logical
implications in the precondition part of the action to precisely
represent this domain and to compress the action models in a
compact form.

The second algorithm,HTN-Learner, aims to learn ap-
plicability conditions from given structural traces of HTN
models. Besides learning action models which are needed
to represent primitive tasks in HTNs, we can also learn the
preconditions of HTN methods, thus providing some under-
standings on the relationship between tasks and subtasks.
Such a perspective is different fromLAMP as it is not fo-
cusing on enhancing theexpressibilitybut understanding the
relationshipbetweentasksat different levels of abstraction.

In the following, we first briefly review theARMS algo-
rithm and then introduceLAMP andHTN-Learner, respec-
tively. After that, we would provide some preliminary exper-

3http://www.informatik.uni-freiburg.de/∼koehler/ipp/pddl-
domains.tar.gz

4Notice that a symbol with a prefix “?” indicates that the symbol
is a variable; e.g. “?c1” suggests that “c1” is a variable that can take
on certain constants as values.

imental results to demonstrate the effectiveness of this three
algorithms and show thatLAMP andHTN-Learner could
indeed enhance theexpressivenessor explore therelationship
between tasks. Next, we discuss some related work on action
model learning. Finally, we conclude this paper and discuss
some possible directions for future work.

2 Learning Applicability Conditions
2.1 Definitions
A planning domain is defined asΣ = (S, A, γ), whereS
is the set of states,A is the set of action models,γ is the
deterministic transition functionS × A → S. Each action
model inA is composed of three parts[Fikes and Nilsson,
1971]: an action name with zero or more arguments, a pre-
condition list which is a list of formulas that must hold in a
state for the action to be applicable, an add list and a delete
list that are sets of atoms. A planning problem can be defined
asP = (Σ, s0, g), wheres0 is an initial state, andg is a goal
state. A solution to a planning problem is an action sequence
(a0, a1, . . . , an) called a plan, which makes a projection from
s0 to g. Eachai is an action schemacomposed of an ac-
tion name and zero or more arguments. Furthermore, aplan
trace is defined asT = (s0, a0, s1, a1, . . . , sn, an, g), where
s1, ..., sn are partial intermediate state observations that are
observed. They are called “partial” because they are allowed
to be empty. The problem of learning applicability conditions
can be stated as follows: given a set of plan tracesT , output a
set of applicability conditions for such plan traces to be able
to proceed.

2.2 Learning STRIPS Action Models (ARMS)
We first briefly review our previous workARMS [Yanget al.,
2007b]. ARMS proceeds in two phases. In phase one of the
algorithm,ARMS finds frequent action sets from plans that
share a common set of parameters. In addition,ARMS finds
some frequent predicate-action pairs with the help of the ini-
tial state and the goal state. These predicate-action pairsgive
us an initial guess on the preconditions, add lists and delete
lists of actions in this subset. These action subsets and pairs
are used to obtain a set of constraints that must hold in order
to make the plans correct. In phase two, we transform the
constraints extracted from the plans into a weighted SAT rep-
resentation[Moskewiczet al., 2001], solve it, and produce
an action model from the solution of the SAT problem. The
process iterates until all actions are modeled.

The algorithm starts by initializing a set of explained ac-
tions and a set of action schemata yet to be explained. Sub-
sequently, it iteratively builds a weighted MAX-SAT repre-
sentation and solve it. Each time a few more actions are ex-
plained, and are used to build new initial states. At any inter-
mediate stage, the partially learned action schemata increases
in size monotonically.ARMS terminates when all actions in
the example plans are learned. As a result, the actions of all
plans examples are learned in a left-to-right sweep if we as-
sume the plans begin on the left and end on the right side,
without skipping any incomplete actions in between. Inter-
ested readers please refer to[Yanget al., 2007b] for a more
detailed description of theARMS algorithm.



2.3 Learning Complex Action Models (LAMP)
Compared toARMS, in this work, our algorithmLAMP at-
tempts to learn more complex action models that support the
use of quantifiers and logic implications, defined in PDDL
language for simplifying previous STRIPS representations
and in some situations even increasing the expressiveness of
the possible constructs. Similar toARMS, the learning prob-
lem of LAMP can be stated as, given a set of plan tracesT ,
LAMP outputs a set of complex action models.

Each complex action model can be described as a set of
formulas, e.g., the action “move” given in Section 1 can be
described by the following formulas:

ID formulas
1 ∀ ?c2,i. ((move ?c1 ?l1 ?l2 i)∧ (prior ?c2 ?c1 i)

→ ¬(at ?c2 ?l1 i))
2 ∀ i. ((move ?c1 ?l1 ?l2 i)→ (at ?c1 ?l1 i))
3 ∀ i. ((move ?c1 ?l1 ?l2 i)→ (at ?c1 ?l2 i+1))
4 ∀ i. ((move ?c1 ?l1 ?l2 i)→ ¬(at ?c1 ?l1 i+1))

where, (move ?c1 ?l1 ?l2 i) is an atom indicating that the
action (move ?c1 ?l1 ?l2) is executed in step i of a plan
trace when the atom istrue, likewise for other atoms. The
first formula describes the precondition “(imply (prior ?c2
?c1)(not (at ?c2 ?l1)))” of action “move”. Other formulas
can be explained similarly. Thus, in order to learn complex
action models, we generate all the possible formulas, which
are calledcandidate formulas, to encode all the possible com-
plex action models. Since such candidate formulas could be
very large, which makes it difficult to process, we constraina
logic implication with the form ofp → q, wherep andq can
be any predicate which probably appears in a complex action
model. In this way, the number of candidate formulas are
generally small since the number of actions and predicates is
small, e.g., there are only 3 actions and 3 predicates in the
domainbriefcase.

Generally,LAMP can be described in four steps. Firstly, we
encode the input plan traces, including observed states and
actions (represented as state transitions), into propositional
formulas. Secondly, we generate candidate formulas, accord-
ing to the predicate lists and specific correctness constraints.
Thirdly, we build a Markov Logic Network (MLN)[Domin-
goset al., 2006] by learning the corresponding weight of each
formula to select the most likely subset from the set of can-
didate formulas. Finally, we convert this subset into the final
action models.

2.4 Learning Action Models and Method
Preconditions (HTN-learner)

A Hierarchical Task Network (HTN) planning problem is de-
fined as a quadruplet(s0, T, M, A), wheres0 is an initial state
which is a conjunction of propositions,T is a list of tasks that
need to be accomplished,M is a set ofmethods, which spec-
ify how a high-level task can be decomposed into a totally
ordered set of lower-level subtasks, andA is a set ofactions,
which corresponds to the primitive subtasks that can be di-
rectly executed. Asolutionto an HTN problem(s0, T, M, A)
is a list ofdecomposition trees. In a decomposition tree, a leaf
node is a fully instantiated action, and the set of actions can be
directly executed from the initial state to accomplish the root

(stack_from_table A B)

(clean A C) (pick-up A) (stack A B)

makestack_from_table_iter(A B C)

(unstack C A) (put-down C)

makeclean_init(A C)

Initial state s0:

(on C A)

(ontable A)

(ontable B)

(clear C)

(clear B)

(handempty)
Partially observed 

states: s1, s2, ...

s0 s1

s2
s3

g

Goal state: g

Figure 1: input: an example decomposition tree

level task. All intermediate level subtasks are also fully in-
stantiated, and all preconditions of actions and preconditions
of methods are satisfied. The roots of the trees correspond to
the tasks inT .

Our learning problem can be described as follows: given
as input a list of decomposition trees with partially observed
states between the leaves of each decomposition tree, our
learning algorithm outputs an HTN model including theac-
tion modelsandmethod preconditions. An example5 of the
input is shown in Figure 1. Figure 1 is an example of a de-
composition tree with initial state or partially observed inter-
mediate states (not shown in the figure) between leaves. The
output of our algorithmHTN-Learner is the action models
and method preconditions.

To learn action models and method preconditions,
HTN-learner first builds the various constraints from the
observed state information, including state constraints,de-
composition constraints and action constraints, which arede-
scribed as follows.

state constraint In a decomposition tree, if a predicate fre-
quently appears before an action is executed, and its pa-
rameters are also parameters of the action, then the pred-
icate is probably a precondition of the action. Likewise,
if a predicate frequently appears before a method is ap-
plied, it is probably a precondition of the method; if a
predicate frequently appears after an action is executed,
it is probably an effect of the action. In other words,
these frequent predicates provide useful information for
our learning target. This information will be used in the
form of state constraintsin our learning process.

decomposition constraint Decomposition constraintsis ex-
tracted from decomposition trees to encode the structure
information. If a taskT can be decomposed inton sub-
tasksst1, st2, . . ., stn, we find that a subtasksti of-
ten provides some preconditions of a method for subtask
sti+1, making that method applicable. As a result, this
method can be applied to the next subtasksti+1. Fur-
thermore, we consider the constraint that the parameters
of a precondition (or effect) should be included by the

5‘clean’ is a task to move off all the blocks above ‘?x’,
and ‘makecleaninit’ is a method to be applied to ‘clean’.
‘stack from table’ is a task to stack ‘?x’ on ‘?y’ when ‘?x’ is on
the table, and ‘makestackfrom table iter’ is a method to be applied
to ‘stack from table’. ‘pick-up’, ‘put-down’, ‘stack’ and ‘unstack’
are four actions to pick up, put down, stack and un-stack a block.



parameters of the action or method the precondition (ef-
fect) belongs to.

action constraint To make sure that the learned action mod-
els are valid and reasonable and could reflect some char-
acteristics of real-world action models, we need to fur-
ther induce some constraints on different actions. These
constraints are imposed on individual actions which can
be divided into the following two types[Yang et al.,
2007b]: (1) An action is often required not to add a
fact (instantiated atom) which already exists before the
action is applied. (2) An action is also required that it
should not delete afact which does not exist before the
action is applied.

For state constraintsanddecomposition constraints, we as-
sign the weight of each constraint as the frequency of its ap-
pearance in decomposition trees. Foraction constraintswe
assign the weight of each constraint as the maximal weight
of all the weights ofstate constraintsanddecomposition con-
straints, making action constraints to be satisfied maximally,
which suggests that the learned action models will be close to
real-world action models as much as possible.

With these constraints, all of which are associated with
weights,HTN-learner builds a set of clauses and view it as
a weighted maximum satisfiability problem, and then solves
the problem by a weighted MAX-SAT solver[Borchers and
Furman, 1998]. After that,HTN-learner converts the so-
lution of the MAX-SAT problem to the HTN model including
a set of action models and a set of HTN method preconditions
that best explain the set of observed decomposition trees.

3 Experiment
To demonstrate the relationship of the learning results of
these three learners, we extract from the domainblocks world
6 30 plan traces for runningARMS andLAMP respectively, 30
decomposition trees for runningHTN-learner. The results
are given below.

By runningARMS, we can learn STRIPS action models of
the domainblocks worldas shown in the following.

(:action pick-up (?x - block)
:precondition (and(clear ?x)(ontable ?x)(handempty))
:effect (and (not (ontable ?x))(not (clear ?x))(clear ?x)

(not (handempty))(handempty)(holding ?x)))
(:action put-down (?x - block)
:precondition (holding ?x)(clear ?x)
:effect (and(not (holding ?x))(clear ?x)

(handempty)(not (clear ?x))(ontable ?x)))
(:action stack (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y)(ontable ?y))
:effect (and(not (holding ?x)) (not (clear ?y))

(clear ?x)(handempty)(not(ontable ?y))(on ?x ?y)))
(:action unstack (?x - block ?y - block)
:precondition (and(on ?x ?y)(clear ?x) (handempty))
:effect (and(holding ?x) (clear ?y)(not (clear ?x))

(not (handempty))(on ?x ?y)(not (on ?x ?y))))
Notice that, compared to the hand-written action models,

6http://www.cs.toronto.edu/aips2000/

parts inbold suggest that they should be added but not ex-
ist in the learned action models; parts initalic suggest that
they should be deleted compared to the hand-written action
models, but they are added in the learned action models.
The same meaning is also used in the results ofLAMP and
HTN-learner.

By runningLAMP, we can learn action models as show in
the following.

(:action pick-up (?x - block)
:precondition (and (clear ?x)(handempty)(holding ?x))
:effect (and(not(handempty))(not(clear ?x))(holding ?x)

(when (ontable ?x)(not (ontable ?x)))
(forall (?y-block)(when(on ?x ?y)(clear ?y)))
(forall (?y-block)(when(on ?x ?y)(holding ?y)))
(forall(?y-block)(when(on ?x ?y)(not(on ?x ?y))))))

(:action put-down (?x - block)
:precondition (holding ?x)(clear ?x) (handempty)
:effect (and (not (holding ?x))(clear ?x)

(handempty) (ontable ?x)
(forall (?y-block)(when (not(clear ?y))(ontable ?x)))
(forall (?y-block)(when (clear ?y)(on ?x ?y)))))

(:action stack (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y)(handempty))
:effect (and(not (holding ?x))(not (clear ?y))(clear ?x)

(handempty) (on ?x ?y)(when (clear ?y)(on ?x ?y))
(when (ontable ?y)(on ?x ?y))
(when (ontable ?y)(not (clear ?y)))
(when (not(clear ?y))(ontable ?x))))

(:action unstack (?x - block ?y - block)
:precondition (and(clear ?x)(holding ?x)(handempty))
:effect (and(not(handempty))(not(clear ?x))(ontable ?y)

(clear ?x)(holding ?x)(when(on ?x ?y)(clear ?y))
(when(ontable ?y)(clear ?y))
(when(ontable ?x)(not(ontable ?x)))
(when(on ?x ?y)(not(on ?x ?y)))))

Compared to the learning result ofARMS, LAMP can learn
action models with quantifiers (and conditional effects) and
implications, e.g., “(forall (?y-block)(when(on ?x ?y)(clear
?y)))” in the action “pick-up”. When these complex action
models are learned, we observe that the action models “pick-
up” and “unstack” are quite similar to each other. Actually,
merging this two action as one action, named as “pick” or
others, is reasonable in the domainblocks world, since we do
not need to concern where a block is before we pick it up.
That is to say, the similarities, specifically the complex action
models learned, give us chances to merge actions together,
reducing the action number as a result.

By runningHTN-learner with decomposition trees as
input, we can learn HTN method preconditions and action
models. In the following, we only show one learned HTN
method to give an intuitive idea about whatHTN-learner
learns because of lack of space.

(:method makestackfrom table iter
:parameters (?x - block ?y - block ?z - block)
:task (stackfrom table ?x - block ?y - block)
:preconditions (and (ontable ?x)(clear ?z) (holding ?z)

(clear ?y)(on ?z ?x))
:subtasks (and (clean ?x ?z) (pick-up ?x) (stack ?x ?y))

In the HTN method, “preconditions” are what we learned,



while “task” and “subtasks” are assumed to be known before-
hand in our algorithmHTN-learner.

4 Related Work
4.1 Action Model Learning
Recently, some researchers have proposed various methods
to learn action models from plan traces automatically. The
first one is to learn action models from plan traces with full
intermediate state information[Benson, 1995; Wang, 1995;
Schmill et al., 2000; Pasulaet al., 2007]. [Schmill et al.,
2000] learns operators with approximate computation in rel-
evant domains by assuming that the world is fully observ-
able. [Wang, 1995] describes an approach to automatically
learn planning operators by observing expert solution traces
and refine the operators through practice in a learning-by-
doing paradigm. [Benson, 1995] present methods by which
an agent learns action models from its own experience and
from its observation of a domain expert. It exploits the idea
of concept induction in first-order predicate logic of induc-
tive logic programming (ILP)[Muggleton and Raedt, 1994],
which allows it to utilize ILP noise-handling techniques while
learning without losing representational power. What they
learn are STRIPS models[Fikes and Nilsson, 1971]. [Pa-
sulaet al., 2007] show how to learn stochastic actions with
no conditional effects.[Holmes and Jr., 2004] models syn-
thetic items based on experience to construct action models.
[Walsh and Littman, 2008] proposes an efficient algorithm for
learning action schemas for describing Web services. Among
these methods, one of their limitations is all the intermedi-
ate observations need to be known. However, in many real
applications such as activity recognition from wireless sen-
sor networks, biological applications of AI Planning, intelli-
gent user interfaces and Web services[Ghallabet al., 2004;
Kuteret al., 2005], sometimes we cannot obtain full interme-
diate state information.
SLAF [Amir, 2005; Shahaf and Amir, 2006] presents a

tractable, exact solution for the problem of identifying ac-
tions’ effects in partially observable STRIPS domains. It re-
sembles version spaces and logical filtering and identifies all
the models that are consistent with observations. It maintains
and outputs a relational logical representation of all possi-
ble action-schema models after a sequence of executed ac-
tions and partial observations. To improve the performance,
[Shahafet al., 2006] proposes an efficient algorithm to learn
preconditions and effects of deterministic action models.In
many real-world planning applications, however, existential
quantifiers may appear in the effects of actions and universal
quantifiers may appear in the preconditions of some actions,
as shown in the examples of “move”.

4.2 Markov Logic Networks (MLNs)
The Markov Logic Network (MLN)[Richardson and Domin-
gos, 2006] is a powerful framework that combines probability
and first-order logic with statistical learning. An advantage of
MLNs over first order logic is in its ability to “soften” the con-
straints; e.g., when a world violates a formula in a knowledge
base, it is less probable, but not impossible. Thus, each for-
mula is associated with aweightto reflect how strong the con-

straint is. Weights can be learned using a variety of methods,
e.g. convex optimization of the likelihood, iterative scaling
and margin maximization. MLNs have been applied to sev-
eral real world applications with great success. For instance,
[Domingos, 2005] proposes to apply Markov logic to model
real social networks, which evolve in time with multiple types
of arcs and nodes and are affected by the actions of multi-
ple players;[Poon and Domingos, 2007] proposes a joint ap-
proach to perform information extraction using Markov logic
and existing algorithms, where segmentation of all records
and entity resolution are performed together in a single inte-
grated inference process.

4.3 HTN learning
We are focusing on a variant of HTN planning called Ordered
Task Decomposition[Nauet al., 2005], which is also the most
common variant of HTN planning by far. In this variant the
planning system generates a plan by decomposing tasks in
the order they were generated into simpler and simpler sub-
tasks until primitive tasks are reached that can be performed
directly. Specifically, for each non-primitive task, the planner
chooses an applicable method and instantiates it to decom-
pose the task into subtasks. When the decomposition process
reaches a primitive subtask, the planner accomplishes it by
applying its corresponding action in the usual STRIPS fash-
ion. The process stops when all non-primitive tasks are de-
composed into primitive subtasks, and outputs an action se-
quence (i.e. a plan) as a solution.

[Ilghamiet al., 2005; Xu and Mũnoz-Avila, 2005] propose
eager and lazy learning algorithms respectively, to learn the
preconditions of HTN methods. These systems require as in-
put the hierarchical relationships between tasks, the action
models, and a complete description of the intermediate states
and learn the conditions under which a method may be used.
Icarus uses means-end analysis to learn structure and precon-
ditions of the input plans by assuming that a model of the
tasks in the form of Horn clauses is given[Nejatiet al., 2006].
[Yanget al., 2007a] presents a probabilistic model for unsu-
pervised learning of HTN methods from action sequences.
HTN-MAKER also learns structures albeit assuming that a
model of the tasks is given in the form of preconditions and
effects for the tasks[Hogget al., 2008]. All of these works
have in common that they assume complete intermediate state
information to be given together with the input traces.

5 Conclusion
In this paper, we have given an overview on several novel ap-
proaches to learn applicability conditions in AI Planning from
partial observations, including STRIPS action models, com-
plex action models with quantifiers and logical implications,
as well as HTN models including action models and method
preconditions, from a set of observed plan traces or decom-
position trees where we can support partially observable in-
termediate states. We list several possible directions which
we could follow for our future work. Our currentLAMP al-
gorithm enumerates all possible preconditions and effectsac-
cording to our specific correctness constraints. In the future,
we wish to add some form of domain knowledge to further



filter out some “impossible” candidate formulas beforehand
thereby making the algorithm much more efficient. Another
direction we want to explore is to extend the action model
learning algorithm to more elaborate action representation
languages that explicitly represent resources and functions.
We will also apply our algorithms to more challenging tasks
in real world planning applications.

Acknowledgment
We thank the support of Hong Kong CERG Grant HKUST
621307, NEC China Lab and the National Science Founda-
tion Grant No. NSF 0642882.

References
[Amir, 2005] E. Amir. Learning partially observable deter-

ministic action models. InProceedings of IJCAI’05, pages
1433–1439, 2005.

[Benson, 1995] Scott Benson. Inductive learning of reactive
action models. InProceedings of ICML’95, 1995.

[Borchers and Furman, 1998] B. Borchers and J. Furman. A
two-phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems.J. Comb. Optim., 2(4), 1998.

[Domingoset al., 2006] P. Domingos, S. Kok, H. Poon,
M. Richardson, and P. Singla. Unifying logical and sta-
tistical ai. InProceedings of AAAI’06, 2006.

[Domingos, 2005] P. Domingos. Mining social networks for
viral marketing.IEEE Intelligent Systems, 20(1), 2005.

[Erol et al., 1994] Kutluhan Erol, James A. Hendler, and
Dana S. Nau. Umcp: A sound and complete procedure
for hierarchical task-network planning. InProceedings of
AIPS’94, pages 249–254, 1994.

[Fikes and Nilsson, 1971] R. Fikes and N. J. Nilsson.
STRIPS: A new approach to the application of theorem
proving to problem solving.Artificial Intelligence Jour-
nal, pages 189–208, 1971.

[Fox and Long, 2003] Maria Fox and Derek Long. Pddl2.1:
An extension to pddl for expressing temporal planning do-
mains.J. Artif. Intell. Res. (JAIR), 20:61–124, 2003.

[Ghallabet al., 2004] Mark Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers, 2004.

[Hogget al., 2008] C. Hogg, H. Mũnoz-Avila, and U. Kuter.
HTN-MAKER: Learning HTNs with minimal additional
knowledge engineering required. InProceedings of
AAAI’08, pages 950–956, 2008.

[Holmes and Jr., 2004] M. P. Holmes and C. L. I. Jr. Schema
learning: Experience-based construction of predictive ac-
tion models. InAdvances in NIPS’04, 2004.

[Hu and Yang, 2008] Derek Hao Hu and Qiang Yang.
CIGAR: Concurrent and interleaving goal and activity
recognition. InProceedings of AAAI’08, 2008.

[Ilghamiet al., 2005] O. Ilghami, H. Mũnoz-Avila, D. S.
Nau, and D. W. Aha. Learning approximate precondi-
tions for methods in hierarchical plans. InProceedings
of ICML’05, 2005.

[Kuteret al., 2005] Ugur Kuter, Evren Sirin, Bijan Parsia,
Dana Nau, and James Hendler. Information gathering dur-
ing planning for web service composition.Journal of Web
Semantics (JWS), pages 183–205, 2005.

[Moskewiczet al., 2001] M. W. Moskewicz, C. F. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient sat solver. InProceedings of DAC’01, 2001.

[Muggleton and Raedt, 1994] Stephen Muggleton and
Luc De Raedt. Inductive logic programming: Theory and
methods.Journal of Logic Programming, 1994.

[Nauet al., 2005] D. S. Nau, T. Au, O. Ilghami, U. Kuter,
H. Muñoz-Avila, J. W. Murdock, D. Wu, and F. Yaman.
Applications of SHOP and SHOP2.IEEE Intelligent Sys-
tems, 20:34–41, 2005.

[Nejatiet al., 2006] N. Nejati, P. Langley, and T. Konik.
Learning hierarchical task networks by obervation. InPro-
ceedings of ICML’06, pages 665–672, 2006.

[Pasulaet al., 2007] H. M. Pasula, L. S. Zettlemoyer, and
L. P. Kaelbling. Learning symbolic models of stochastic
domains.Journal of Artificial Intelligence Research, 2007.

[Poon and Domingos, 2007] H. Poon and P. Domingos. Joint
inference in information extraction. InProceedings of
AAAI’07, pages 913–918, 2007.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks.Machine Learn-
ing, 62(1-2):107–136, 2006.

[Schmillet al., 2000] M. D. Schmill, T. Oates, and P. R. Co-
hen. Learning planning operators in real-world, partially
observable environments. InProceedings of AIPS’00,
2000.

[Shahaf and Amir, 2006] Dafna Shahaf and Eyal Amir.
Learning partially observable action schemas. InProceed-
ings of AAAI’06, pages 913–919, 2006.

[Shahafet al., 2006] Dafna Shahaf, Allen Chang, and Eyal
Amir. Learning partially observable action models: Effi-
cient algorithms. InProceedings of AAAI’06, 2006.

[Walsh and Littman, 2008] Thomas J. Walsh and Michael L.
Littman. Efficient learning of action schemas and web-
service descriptions. InProceedings of AAAI’08, 2008.

[Wang, 1995] Xuemei Wang. Learning by observation and
practice: An incremental approach for planning operator
acquisition. InProceedings of ICML’95, 1995.

[Xu and Mũnoz-Avila, 2005] K. Xu and H. Mũnoz-Avila. A
domain-independent system for case-based task decom-
position without domain theories. InProceedings of
AAAI’05, 2005.

[Yanget al., 2007a] Qiang Yang, Rong Pan, and Sinno Jialin
Pan. Learning recursive htn-method structures for plan-
ning. In Proceedings of the ICAPS-07 Workshop on AI
Planning and Learning, 2007.

[Yanget al., 2007b] Qiang Yang, Kangheng Wu, and Yun-
fei Jiang. Learning action models from plan examples us-
ing weighted MAX-SAT. Artificial Intelligence Journal,
171:107–143, February 2007.


