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1 Introduction
A key challenge of automated planning is the requirement of
a domain expert to provide some sort of background planning
knowledge about the dynamics of the planning domain. At
a minimum, classical planners require semantic descriptions
(i.e., preconditions and effects) of possible actions. More re-
cent planning paradigms allow or require the expert to pro-
vide additional knowledge about the structural properties of
the domain and problem-solving strategies. In many realistic
planning domains, however, additional planning knowledge
may not be completely available; this is partly because it is
very difficult for the experts to compile such knowledge due
to the complexities in the domains and it is partly because
there is limited access to an expert to provide it. Thus, it is
crucial to develop systems in order to learn planning knowl-
edge when human contributions are limited or unavailable.

One of the best-known approaches for modeling planning
knowledge about a problem domain is Hierarchical Task
Networks (HTNs). An HTN planner formulates a plan via
task-decomposition methods (also known as HTN methods),
which describe how to decompose complex tasks (i.e., sym-
bolic representations of activities to be performed) into sim-
pler subtasks until tasks are reached that correspond to actions
that can be performed directly. The basic idea was devel-
oped in the mid-70s [Sacerdoti, 1975], and the formal under-
pinnings were developed in the mid-90s [Erol et al., 1996].
More recently, the HTN planner SHOP [Nau et al., 1999]
has demonstrated impressive speed gains over earlier classi-
cal planners by using HTN-based domain-specific strategies
for problem-solving while performing domain-independent
search. HTNs provide a natural modeling framework in many
real-world applications including evacuation planning, manu-
facturing, and UAV management planning [Nau et al., 2005].

Over the years, researchers have developed several sys-
tems that are capable of learning HTNs. Some concentrate
on learning applicability conditions of given HTNs such as
CaMEL [Ilghami et al., 2005] and DiNCAD [Xu and Munoz-
Avila, 2005], while others learn both preconditions and the
task decompositions – i.e., the hierarchical structure relat-

1Department of Computer Science and Engineering, Lehigh Uni-
versity, Bethlehem, Pennsylvania 18015, USA

2University of Maryland, Institute for Advanced Computer Stud-
ies, College Park, MD 20742, USA

ing tasks and subtasks. Examples of this approach include
X-Learn [Reddy and Tadepalli, 1997], Icarus [Langley and
Choi, 2006], LIGHT [Nejati et al., 2006], and our previous
work on HTN-Maker [Hogg et al., 2008]. These works on
learning hierarchies elicit a hierarchy from a collection of
plans or from given action models or from both. It has been
demonstrated, both theoretically and experimentally, that ex-
isting works usually generate “good” planning knowledge as
HTNs. However, it is also known from those evaluations that
sometimes the learned HTNs are overly general and in other
times overly specific. Overly general methods yield poor
planning performance when they are used, while overly spe-
cific ones result in too many HTN methods being required in
order to cover all or most situations in a planning domain.

This paper describes our work in progress to formalize the
“goodness” of the HTN learning. More specifically, we de-
scribe the preliminaries for a new HTN Learning approach,
which uses our previous work on HTN-Maker as a basis to
learn the structures of HTNs and incorporates Reinforcement
Learning [Sutton and Barto, 1998] techniques in order to
learn “utilities” of those HTNs. This framework computes
the utilities of tasks and the methods for them and chooses
the best method or methods for each task given as input for
the plannnig domain. The result is that inferior methods for
a task are eliminated, leaving only the best methods to be re-
turned as a solution to the input HTN learning problem.

2 Preliminaries
We use the usual definitions for HTN planning as in Chapter
11 of [Ghallab et al., 2004] and adapt the formalism in our
previous work on HTN-Maker [Hogg et al., 2008]. A state
s is a collection of ground atoms. A planning operator is a
4-tuple o = (h,Pre,Del,Add), where h (the head of the op-
erator) is a logical expression of the form (n arg1 . . . argk)
such that n is a symbol denoting the name of the operator
and each argument argi is either a logical variable or con-
stant symbol. The preconditions, delete list and add list of the
planning operator, Pre, Del, and Add respectively, are logical
formulas over literals.

An action a is a ground instance of a planning operator.
An action is applicable to a state s if its preconditions hold
in that state. The result of applying a to s is a new state
s′ = APPLY(s, a) = (s \Del)∪Add. A plan p is a sequence
of actions.



A task is a symbolic representation of an activity
in the world, formalized as an expression of the form
(t arg1 . . . argk) where t is a symbol denoting the name
of the activity and each argi is either a variable or a con-
stant symbol. A primitive task corresponds directly to the
head of a planning operator and denotes an action that can be
expressed directly in the world. A nonprimitive task cannot
be directly executed; instead, it needs to be decomposed into
simpler tasks until primitive tasks are reached.

In HTN planning, a task is simply a statement with no se-
mantics other than those provided by the methods that de-
compose it (see below). We define an annotated task to be of
the form t = (n,Pre,Effects) where n is a task, Pre is a set
of atoms known as the preconditions, and Effects is a set of
atoms known as the effects. In this way, a nonprimitive task
with annotations may be thought of as an abstract action.

The preconditions and effects associated with an abstract
action as above give semantics for accomplishing the anno-
tated task that action specifies and enable us to define an
equivalence between an annotated task and a set of goals,
and furthermore between a classical planning problem and
an HTN planning problem. In particular, given a set of
goal atoms g, we define the equivalent annotated task as
t = (n, ∅, g) for some task n.

We restrict ourselves to the Ordered Task Decomposition
formalism of HTN planning [Nau et al., 1999]. In this formal-
ism, an HTN method skeleton is a pair m = (h,Subtasks),
where h is a nonprimitive task (the head of the method skele-
ton) and Subtasks is a totally-ordered sequence of subtasks.

An HTN method is a triple m = (h,Pre,Subtasks), where
h is a nonprimitive task (the head of the method), Pre is a
logical formula denoting the preconditions of the method, and
Subtasks is a totally-ordered sequence of subtasks. A method
m is applicable to a state s and task t if the head h of the
method matches t and the preconditions of the method are
satisfied in s. The result of applying a method m to a state s
and task t is the state s and sequence of Subtasks.

We define the notion of an HTN decomposition as follows.
Given a task t, an HTN decomposition for t consists of a plan
p that accomplishes t and a subset of the methods from the
input domain description that, when successively applied to t
and its subtasks, generates the plan p.

Let t be a nonprimitive task and M is a set of methods.
Suppose m ∈ M is a method that can be applied to t (i.e., t
is the head of m). Let Sm denote all of the states in which m
is applicable to t. In other words, each state s ∈ Sm satisfies
the preconditions ofm. Note that we do not need to represent
Sm explicitly and exhaustively; the precondition formula of
m compactly represents Sm.

The task-execution function δ of applying m to t in a state
s is given as follows. If s 6∈ Sm then δ is not defined. Oth-
erwise, δ(s, t,m) is the set of states defined as follows. For
every HTN decomposition for t given M , let p be the plan to
be generated by that decomposition and let s′ be the state gen-
erated by successively applying the actions in p in s. Then, s′
is in δ(s, t,m).

We define the successor tasks of applying a method m to t

in s as the set of tasks as follows:

∆(t,m) = {t′ | s ∈ Sm, s
′ ∈ δ(s, t,m), and s′ satisfies

the preconditions of the annotated task t′}

Intuitively, the successor tasks are a set of tasks that could
possibly be accomplished following a complete decomposi-
tion of the given task from any state.

An HTN planning problem is a 4-tuple Ph =
(s0, T,O,M), where s0 is the initial state, T is the initial se-
quence of tasks, and O and M are sets of planning operators
and methods respectively. A solution for Ph is a plan (i.e., a
sequence of actions) p that, when executed in the initial state,
performs the desired initial tasks T .

Let S be the set of all states and A be the set of all possi-
ble actions (i.e., all possible ground instances of the planning
operators) in a planning domain. Then, the reward function is
defined as R : S × A → <. We let γ be the discount factor
and α be the learning rate as in [Sutton and Barto, 1998].

We extend the definition of a policy as follows. LetM be
the set of all possible HTN methods in a domain. Then, a
policy π is a mapping such that π : S → A ∪M. A policy
π is defined for a state s if π specifies an action or a method
for s. Otherwise, it is undefined for s. A policy π is primitive
if for every state s in which π is defined, π(s) is an action.
Similarly, π is non-primitive if there exists at least one state s
for which π is defined and π(s) is an HTN method.

Let t be an annotated task andMt be a set of method skele-
tons for t. Then, we define the utility of a task and of applying
m ∈Mt to t using a variant of Q-Learning update rule:

U(t) = max
m∈Mt

Q(t,m) (1)

Q(t,m) = (1− α)Q(t,m) + (2)
α [γ max

t′∈∆(t,m)
U(t′)−Q(t,m)]

Intuitively, the utility value of a method skeleton m for an
annotated task t provides a measure of “goodness” for de-
composing t into the subtasks specified in m.

We define a learning example as the tuple (s, g, p), where
s is the initial state, g is a goal state, and p is a plan that starts
from s and ends in g. In other words, a learning example is a
classical planning problem along with a solution plan for it.

3 Learning HTNs using Reinforcements
In this section, we describe an incremental, bottom-up learn-
ing procedure that starts from a learning example and succes-
sively produces HTN methods that form a hierarchy. We call
this procedure MaxHTN.

Let A be the set of actions in a planning domain. Let M
be the set of HTN methods to be learned, which is the empty
set initially. We assume that the utility values for primitive
actions are given as input. Given a learning example (s, g, p),
the learning procedure iterates over two successive phases.
At each iteration, the first phase considers all potential HTN
methods from the learning example. 1 The second phase

1Learning all possible HTN methods from a learning example



immediately follows and produces a (possibly) non-primitive
policy in this particular iteration over the learned HTNs M
and the actions A of the planning domain. After MaxHTN
learns a policy in this iteration, it continues with the next iter-
ation. When there are no new methods that can be generated,
the learning procedure terminates and returns the methods in
M along with their Q values. We describe these phases be-
low.

Let i denote MaxHTN’s current iteration and let Li be the
learning example in this iteration. Initially, we have i = 0
and L0 is the primitive learning example. The first phase,
in which MaxHTN generates a set Mi of HTN methods, is
very similar to the HTN-Maker learning algorithm. We sum-
marize it here; for details please see [Hogg et al., 2008].
For an input initial state and a solution plan p for a classi-
cal planning problem, HTN-MAKER first generates a list S
of states by applying the actions in p starting from the ini-
tial state s0. The algorithm then traverses the states in which
the effects of an annotated task (i.e., an abstract action) might
become true, the states from which the accomplishment of
those effects might begin, and the abstract actions whose ef-
fects might have been accomplished over that interval. This
traversal order in HTN-Maker is chosen deliberately to pro-
vide the best opportunity for learned methods to subsume
each other. Based on this traversal order, HTN-Maker con-
siders all possible groupings of the actions that appear in Li

and attempts to learn a method for each grouping. In partic-
ular, for each grouping HTN-MAKER regresses the effects
of the annotated task through the plan elements (actions in
p or methods learned previously) that caused those effects,
in order to identify a sequence of subtasks that achieve the
task and the preconditions necessary to ensure the success
of those subtasks. Unlike previous work on goal regression
[Mitchell et al., 1986], HTN-MAKER regresses goals both
horizontally (through the actions) and vertically (up the task
hierarchy through previously-learned methods).

MaxHTN also uses the algorithm outlined above in order
to generate the set Mi of the learned methods at the iteration
i. If there are no new methods learned at the above step (i.e.,
if Mi = ∅), then MaxHTN returns the set of methods M
learned so far and the Q-function that specifies the conditions
under which each method should be used and its utility. Oth-
erwise, MaxHTN continues with learning the utilities for the
methods in Mi.

Then, MaxHTN performs a reinforcement learning step,
given the set Mi∪Ai. The input to this RL step also includes
the initial state and the goal state of Li. With these inputs,
the RL step performs a simple Q-Learning procedure over
the action space defined by Mi ∪ Ai. When the Q-Learning
procedure terminates (we use similar ε termination criterion
as in [Sutton and Barto, 1998]), the result is a (possibly) non-
primitive policy πi of the current iteration.

An explanation of how to use the methods in Mi in Q-
Learning as actions is in order. Suppose s is a state generated
during the Q-learning process. If i = 0 (i.e., we are in the first

may not be practical in many situations, given the combinatorics
involved. We are planning to investigate heuristic approaches to al-
leviate this issue, while preserving optimality (or near-optimality).

iteration) then Mi is the empty set and Q-learning process
proceeds over the set of primitive actions A0. For i > 0,
we say that a method m ∈ Mi is applicable in s if (1) the
preconditions in m hold in s and (2) all of its subtasks appear
in the policy πi−1 at the previous iteration. This way, the
Q-Learning process learns a Q-value for a method and state
pair, if that method is chosen to be included in the πi when
the learning ends.

Having computing the policy πi, MaxHTN then updates
the set M with the methods that appear in πi. Suppose Sm

denotes the set of all states in which a method m ∈ M is ap-
plicable (i.e., its preconditions hold). For each two methods
m and m′ in M , if both m and m′ are for the same anno-
tated task t, Sm = Sm′ , and Q(t,m) > Q(t,m′) (which
means that Q(t,m) > Q(tm′) for each state s ∈ Sm), then
we filter out (i.e., remove) the method m′ from M . This ends
the current iteration i and MaxHTN goes on to the next iter-
ation i + 1. In the next iteration, each path p induced by πi

from the initial state s to the goal state g in the input learn-
ing problem constitutes a learning example for MaxHTN at
iteration i + 1. Currently, we choose one of those paths that
has the best Bellman back-up utility computed by a variant
of Equation 2 in the usual way; however, we are currently in-
vestigating whether learning from all such paths yieds more
optimal results in MaxHTN.

4 Discussion: Hierarchical Reinforcement
Learning

Hierarchical Reinforcement Learning (HRL) has been pro-
posed as a successful research direction to alleviate the well-
known “curse of dimensionality” in traditional Reinforce-
ment Learning. Here, hierarchical domain-specific control
knowledge and architectures have been used to search MDPs
more effectively. See [Barto and Mahadevan, 2003] for an
excellent survey on the recent advances on HRL. Below, we
summarize the techniques in relation to our work.

The MaxHTN procedure has similarities with the use of
options in Hierarhical Reinforcement Learning (HRL)[Sutton
et al., 1999] in that both MaxHTN and HRL with options use
Q-Learning type of learning policies with a mixture of prim-
itive actions and high-level ones. In MaxHTN, a high-level
action is an HTN method, whereas in HRL with options, it
would be a policy (i.e., an option) that may consists of prim-
itive actions or other options. The important difference is,
to the best of our knowledge, MaxHTN learns those HTN
methods that participate in the hierarchical Q-Learning pro-
cess, whereas options are hand-coded by experts and given as
input to the reinforcement learning procedure.

Parr [Parr, 1998] developed an approach to hierarchically
structuring MDP policies called Hierarchies of Abstract Ma-
chines (HAMs). This architecture has the same basis as op-
tions, as both are derived from the theory of semi-Markov
Decision Processes. A HAM policy is defined by a collection
of stochastic finite-state machines. During the search in the
MDP, a HAM policy induces probabilistic state-transitions,
hence yielding different outcome states with different util-
ities (i.e. rewards and costs). A planner that uses HAMs
composes those policies into a policy that is a solution for



the MDP. To the best of our knowledge, the HAMs in this
work must be supplied in advance by the user rather than be-
ing learned on-the-fly by an HTN learner, such as MaxHTN,
or more precisely, the HTN generation/learning algorithm it
borrows from HTN-Maker.

There are also function approximation and aggregation ap-
proaches to hierarchical problem-solving in RL settings. Per-
haps the best known technique is Diettrich’s MAX-Q decom-
positions [Dietterich, 2000]. These approaches are based on
hierarchical abstraction techniques that are somewhat similar
to HTN planning. Given an MDP, the hierarchical abstraction
of the MDP is analogous to an instance of the decomposition
tree that an HTN planner might generate. Again, however, the
MAX-Q tree must be given in advance and it is not learned in
an incremental and bottom-up fashion as in our focus in this
paper.

The bottom-up and incremental HTN learning is also a
point in our work that differentiates MaxHTN with the pre-
vious work. To the best of our knowledge, all of the HRL
approaches proposed so far are designed in as top-down de-
composition procedures, which make them very efficient and
useful for eliminating redundant parts of the search space in
MDPs and constrainting the value function of the solutions
they generate. In our work, we are aiming to use RL in order
to learn hierarhical structures in the for of HTNs by observing
“good” behavior in every level of the hiearchy and propagat-
ing upwards not only the value function (as in MAX-Q for
example), but also the structural knowledge as well (since the
methods learned in the lower levels determine the methods to
be learned in the higher levels).

5 Conclusions
We have described the preliminaries of our work in progress
on combining Reinforcement Learning techniques and sym-
bolic HTN learning. The MaxHTN procedure we described
above uses this combination in order to learn utilities of HTN
methods produced and to generate a “good” HTN knowledge
base for a planning domain. MaxHTN performs a bottom-
up, incremental learning procedure towards this objective. At
each iteration, it learns new HTN methods given what was
learned in the previous iterations. Once the methods are gen-
erated, it uses a Q-Learning procedure to associate utilities
with those methods. Finally, it chooses the best methods for
each state and tasks considered in this iteration. We described
a method-filtering rule that performs that choice.

In addition to learning HTNs via combining previous learn-
ing approachs and RL, one other advantage of the direc-
tion we are pursuing is the Q-value update rule we use
above. Note that this rule does not mention the state-space
of the underlying planning domain, which provides an ab-
straction methodology to do HTN learning. It also avoids
the large search spaces that the traditional Q-Learning ap-
proaches would explore as well as the large Q-tables they
would be required to keep. In that sense, our update rule
serves the same purpose as the HRL approaches described
above.

We are in the process of developing the formal theory be-
hind our work described here, which will provide theorems

for the soundness, convergence, and the optimality of the
learned HTNs. To test this theory, we will implement the
procedure described above and perform an extensive exper-
imentation with the benchmark problems domains used for
both learning HTNs and HTN planning in the literature.

Finally, note also that the above method filtering rule we
described in the paper is a very tight and strong one. Although
we believe that it is theoretically appropriate and useful, in
many practical situations, MaxHTN may not simply filter any
methods at any iteration. One way to alleviate this issue is
to develop a Pareto-optimal rule in order to filter methods.
An alternative, and perhaps more practical solution, would
be require a threshold on the percentage of the cases where
a method for the same task has higher utilities than another
one. In either case, we will focus on not introducing a state-
based Q-value update rule. We will investigate both in the
near future.
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