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Abstract. This paper presents a new approach for spatial event prediction that 

combines a value function approximation algorithm and case-based reasoning 

predictors. Each of these predictors makes unique contributions to the overall 

spatial event prediction. The function value approximation prediction is 

particularly suitable to reasoning with geographical features such as the (x,y) 

coordinates of an event. The case-based prediction is particularly well suited to 

deal with non-geographical features such as the time of the event or income 

level of the population. We claim that the combination of these two predictors 

results in a significant improvement of the accuracy in the spatial event 

prediction compared to pure geographically-based predictions. We support our 

claim by reporting on an ablation study for the prediction of improvised 

explosive device (IED) attacks. 

Keywords: spatial prediction, case-based prediction, function value 

approximation. 

1   Introduction 

Spatial event prediction is a problem for which the input is a series of events e1 ,e2, .., 

en and their location in a map [1,2,3]. These events have time stamps associated with 

them, in addition to the locations in the map where they occur and some additional 

information (e.g., type of event). Based on these locations, regions or influence zones 

are found. Within an influence zone, cells may have different influence values, which 

are weights associated with cells reflecting a prediction about the potential locations 

of future events.  

 

Figure 1 presents an example of an influence map generated by the PITS++ system, 

our function value estimation predictor, for improvised explosive device (IED) attacks 

in an urban location. PITS++ uses a function value approximation mechanism to 

update the influence values each time a new IED event is entered into the system. IED 

attacks are a type of attack where groups of insurgents place an explosive device that 



is triggered to explode when a target moves close by. These kinds of attacks have 

become very common in Iraq and elsewhere and are frequently discussed by the news 

media. The colors are not visible in black and white printout but, basically, we use 

cyan colored numbers to indicate the locations of IED attacks and the colored-areas 

indicate the likelihood of attacks. Each cell is colored white (zero likelihood), green 

(very unlikely), yellow (somewhat likely), orange (likely), or red (very likely). 

Figure 1: PITS++ viewer showing the training (cyan) and test (magenta) events 

 

The PITS++ system is based on its predecessor PITS system [4], which computes 

these influence maps based on purely geographical features such as the (x,y) location 

of the map. Our goal is to enhance the influence map by adding non-geographical 

features such as time or income level in the area of the attacks. To accomplish this we 

added case-based reasoning capabilities to PITS++ to directly modify or “retouch” the 

influence values to take into account the contribution of the non-geographical 

features. The case-based reasoning module, DINCAT (Domain Independent Case-

base Assistant) stores copies of the events originally used to train the PITS++ system 

but also annotated with the non-geographical features associated with the event such 

as the time of the attack. Then, for each cell in the influence map it retrieves all cases 

whose similarity to the features of the case is greater than a certain threshold. These 

cases are then used to retouch the influence values by taking into account the 

following factors: 

 

 The time stamps from the retrieved cases  



 The similarities of the retrieved cases 

 The number of cases retrieved 

 

In this paper we will discuss how these factors were combined into a retouching 

formula and show in an ablation study on synthetic data that, CBR substantially 

improves the accuracy of the prediction of the PITS++ system. To the best of our 

knowledge, this is the first time that case-based reasoning approaches have been 

combined with function value estimation predictors for the task of spatial event 

prediction. Our results demonstrate the significant impact that CBR can have for this 

task. 

 

The paper continues as follows: the next section describes the PITS++ system 

function value estimation predictor; Section 3, the main section of the paper, 

describes in detail the CBR techniques used to enhance the spatial prediction process; 

Section 4 discusses the results of our empirical evaluation; Section 5 discusses related 

work; finally, we make concluding remarks. 

2   PITS++: Function Value Estimation Prediction 

SET Corporation’s PITS++ tool dynamically assesses the potential of IED threat, i.e., 

the likelihood of insurgents emplacing IEDs in a geographic area, by making an 

estimation of the prediction function value based on a collection of input events.   

 

The PITS++ tool is built on our previous work on PITS [4]. Note that the main 

difference between the two systems is that PITS++ incorporates a CBR mechanism 

into the original PITS system. Figure 2 provides an overview of the original PITS 

system function value estimation mechanism [4]. The inputs to PITS include terrain, 

IED events, and a history of friendly (blue) and opponent (red) force activity.  In PITS 

the region of interest is a rectangle bounded by geographic coordinates and divided 

into cells of configurable dimension.  PITS extracts IED-relevant features from an 

input message stream and populates each cell with the terrain and history data 

relevant to that cell. PITS computes over these IED relevant features to determine the 

influence value, which we call the PIT value, for each cell. These features (e.g., 

intersections and corners) are systematically determined using behavioral heuristics as 

well as knowledge from subject matter experts (SMEs). Each feature has a weight 

associated with it that indicates the opponent’s preference for a feature in the context 

of IED emplacement activities. The feature weights are dynamically adapted with the 

latest IED events using function value estimation algorithms [5,6]. The cells are 

grouped into IED influence regions based on a cell’s location and PIT value. 

 

Prediction of IED emplacements is captured by the IED map, which is a grouping of 

all the IED attractiveness regions in the terrain at a given point in time. Each cell in 

the grid is thermally colored according to its potential IED threat level.  In Figure 1, 

past, future (during evaluation phases), and manually input (current) IED events are 

indicated by numbers displayed in the lower left, upper right, and lower right corners 



of the cells, respectively. As a temporally ordered list of events are entered into the 

system, the corresponding PIT values are adjusted based on a scalar function on the 

preferences elicited so far and the features. In Figure 2, The Feature Map lists all the 

cells that contain non-zero values for each feature. The BattlefieldAOP class is a 

representation of the area of interest as a grid of cells. It is responsible for populating 

each cell with the terrain and history information relevant to the cell.  

 

The following are the geographical features computed in PITS (their values are 

normalized so they are always between 0 and 1). These features were obtained from 

interviews with subject matter experts: 

 

 Roads: We calculate this value by summing up the number of roads in the 

cell.  

 

 Corners/Intersections: Because of the data, we do not distinguish corners 

from intersections. To calculate this value, we simply look to see if there is 

at least one corner or intersection in the cell. If so, the cell gets a value of .5 

Figure 2: Function value estimation mechanism of the Potential IED Threat 

System (PITS). 



for this feature1. If the cell does not contain a corner or intersection, then the 

value is 0. Multiple corners/intersections have no additional impact on the 

feature value. 

 

 Buildings: This feature is meant to identify dense areas of the city, so we are 

looking to see if the cell contains at least 5 buildings. If so, we give it a value 

of 1 for this feature, and 0 otherwise. 

 

 Prior IEDs: If an IED has gone off in the cell, the cell will have a value of 1 

for this feature, and 0 otherwise. 

3   Integrated Prediction with CBR 

The basic premise is to update the PIT value (or influence values) by a “retouching” 

process based on the cases stored in the case base. Retouching works as follows. 

Suppose the latest IED attack occurred near a mosque. It will be saved in the case 

library after being processed by the CBR module. At the time of prediction, for each 

cell in the battlefield grid IED map, a query case will be created using all features 

associated with this cell. The query case will be dispatched to the CBR module, which 

will retrieve a list of similar cases. In Figure 3, the case library contains three cases 

where case1 is more recent than case2 and case3. Cell1 gets two similar cases (case1 

and case3) because they all share the fact that they are near a mosque. Cell3 gets two 

similar cases (case2 and case3) because they are all linked to a gas station. Cell2, on 

the other hand, failed to retrieve any similar cases because none of the cases in the 

                                                           
1 For this feature the values are either 0 or 0.5. We did not assign a max value of 1 when 

corners or intersections were present because this feature was deemed less significant as 

those with max value of 1, e.g. Roads. 

 

Figure 3: Retouching PIT values with retrieved cases. 



library is related to a hospital. Both cell1 and cell3 will have their PIT value bumped 

up because they found similar cases whereas cell2 will not. In addition, cell1 will 

have a larger increase than cell2 because the former contains a more recent case 

case1.  

 

 

For the purposes of using CBR in the context of IED attack prediction, cases represent 

IED events. Formally, we define a case to be:  

 

Case = (feature1, …, featuren) ,     (1) 

 

where featurei includes both geographical features and non-geographical features. 

Geographical features, such as if the cell contains a major road intersection, are 

represented in the original PITS system. Non-geographical features are divided into 

human terrain (e.g., religion) and attack specific features (e.g., the type of explosive 

used) [7]. Note that non-geographical features are not represented in the original 

PITS. So a case can be seen as representing a possible correlation between the 

geographical and non-geographical features. 

3.1   Retouching formula  

The correlations between geographical and non-geographical features stored in the 

cases are used to determine how the PIT value is retouched. Specifically, the 

increment in PIT value is a function of the following factors: 

 

 Date stamp of the cases. Prediction should be influenced by the date when 

an event took place. An event that occurred one year ago should carry less 

weight than a week-old event. 

 Similarity of the features of the event and the retrieved cases. Prediction 

should be influenced by the similarity between the cell in consideration 

and where an event took place. Closer events should carry more weight 

than those farther away. 

 Number of cases retrieved. The more cases are retrieved, the larger the 

change in the PIT value. 

 

The old PIT value is updated by a factor of the summation of the retrieved cases, 

factoring in their similarity and their time stamps. We developed the following 

formula which commits to these three constraints: 

 (2) 

 

Where: 

 

 C is a variable iterating over all retrieved cases 

 PITSOLD is the current PIT value for the cell 

 PITSNEW is the value we are trying to compute 



 PITSMIN,MAX  is a scaling factor that determines the relative significance 

of the original PIT value and the cases.  It is currently defined as a factor 

of a simple linear interpolation of the possible PIT values, ( PITSMAX - 

PITSMIN ).  

 SIM(C) is the similarity between the case and the PITS++ system cell 

whose value is being retouched 

 SIMMIN,MAX is a factor based on  the minimum similarity and maximum 

similarity values of the cases. We currently set it to 1. 

 TIMENOW,MIN(C) is a factor based on how close is the case’s time stamp,  

TIME(C), to the date when the retouch is done (NOW) and the earliest 

date (MIN) for which we consider data useful. The closer the time stamp 

of C to NOW, the smaller the value of TIMENOW,MIN(C), which in turn 

makes the fraction larger. Conversely, the closer it is to MIN the larger 

the value of TIMENOW,MIN(C), which in turn makes the fraction smaller. It 

is currently defined as a simple linear interpolation: (TIME(C) - MIN) / 

(NOW - MIN) 

3.2   Similarity metric  

The similarity metric in DINCAT aggregates local similarities. The local similarities 

measure how close are two values of the same feature. For example, if a feature 

represents the (x,y) location in a map, the similarity between two locations can be 

defined as a function of the inverse of the distance between the two locations. Local 

similarity simi() for a feature is defined such that it returns a value between 0 (non 

similar) and 1 (most similar). We define three forms of local similarities depending on 

the type of feature: 

 

 Symbolic. For symbolic features we assign 1 if they are the same and 0 if 

they are different. 

 Numeric. For numeric features we assume that the minimum (min) and 

maximum (max) values are given, and we define the similarity between two 

values X and Y as the inverse of the ratio of the distance between them and 

the largest possible distance: 1 – (|X – Y|/(max – min)). 

 Date. For date values, we convert them into absolute times measured in 

hours relative to a fixed date in time. We assign min and max to be the 

absolute time for the range dates for the events and use the same formula as 

with the numeric features.  

 

With these local similarities we compare two vectors of features <X> and <Y> by 

computing the aggregated similarity metric of the local similarities, SIMGLOBAL(), 

defined as: 

 

SIMGLOBAL(X1..n,Y1..n) = 1sim1(X1,Y1) + … + nsimn(Xn,Yn) ,   (3) 

 



where the values of the vector weights, 1 + … + n, sum to 1. As a result, 

SIMGLOBAL() also returns a value between 0 and 1 (1 been most similar). For our 

current implementation we set each i to 1/n. 

Table 1: Non-geographical features currently implemented. 

Name Type Parameters Description 

TimeIEDAttack numeric 0, 24 The time of the IED attack 

DateIEDAttack date MM/DD/YYYY The date of the IED attack 

DeliveryMode symbolic boat-borne, animal-borne, 

collar-bombs, suicide-

bombers, platter-chargers,  

explosively-formed-

penetrators,  improvised-

rocket-assisted-munitions 

Classification of the IED by 

the delivery mechanism as 

per JCS Pub 1-02 

Target symbolic US-Armored-Vehicle, 

Iraqi-Police-Vehicle, US-

Contractor-Vehicle, US-

Foot-Patrol, Iraqi-Foot-

Patrol, Civilian-vehicle, 

Civilian-foot  

Type of target of the IED 

attack 

TriggerMechanism symbolic infrared-light-beam, 

radio-signal, hard-wire, 

contact 

Trigger mechanism used in 

the IED 

Academic symbolic academic, non-academic Indicates if the area of the 

IED attack is close to an 

university 

Income symbolic 1, 2, …, 9 Indicates the income level in 

the area of the IED attack (1 

is lowest; 9 is highest) 

Tribe symbolic AlDulaim, BaniTamim, 

Shamar, AlJanabi, 

Aljubour, Alazza 

Tribe in the area of the IED 

attack. There are more than 

100 tribes in Iraq. Current 

values reflect the fact that in 

any one area only a few 

tribes are present. 

Religion symbolic Shia, Sunni, Christian Predominant religion in the 

area of the IED attack. There 

are more than 10 religions in 

Iraq. Current values reflect 

the fact that in any one area 

only a few religions are 

present. 



3.3   Non-geographical features  

A non-geographical feature may take a date, a numeric value (between a minimum 

value and a maximum value) or a symbolic value (from a predefined set). For each 

feature (see Table 1) we identify the following elements: 

 

 Name: indicates the name of the feature 

 Type: indicates the type of the feature; this can be symbolic, numeric, or date. 

 Parameters: for numeric features this will indicate the minimum and 

maximum value and for symbolic features this will indicate the set of possible 

values.  

 Description: a description of  the feature 

4   Empirical Evaluation 

The purpose of the experiment is to evaluate the contributions, if any, of the CBR 

approach to the event spatial prediction made by PITS. For this purpose we performed 

an ablation study where we compared the results of PITS versus PITS++ (PITS 

augmented with the CBR retouch mechanism) on the same data. As mentioned 

before, cases can be seen as storing information of previous events co-relating 

geographical and non-geographical features. Therefore, it is conceivable that using 

our CBR retouching approach will result in improvements in the prediction when, as a 

whole, correlations exists between the geographical and non-geographical features. 

However, it might be detrimental to use the CBR approach when no such co-relations 

exist. Therefore, we created 3 data sets to observe the performance in 3 scenarios: 

 

 Correlated. The data set consisted of 48 events in which 3 kinds of 

correlations exist between the geographical and non-geographical 

features. Every event in the data set commits to one of these correlations. 

 Partially correlated. The data set consisted of 44 events in which 5 kinds 

of correlations exist between the geographical and non-geographical 

features. Roughly ¼ of the events have no correlation whatsoever. 

 Chaotic. The data set consists of 42 events. No co-relations exist between 

the geographical and non geographical features. 

 

Each data set was divided into a training set consisting of 3/4 of the data and a testing 

set consisting of the remaining 1/4 of the data.   The retrieval threshold was set to 

0.75.  

 

The pseudo-ROC (Receiver Operating Characteristics) curve was used to evaluate the 

PITS++ system’s performance as an IED event predictor (Figure 4). It is defined as 

the IED coverage, which is the percentage of future IED events covered by threat 

regions, plotted as a function of the area coverage, which is the percentage of the  



playbox (i.e., area of prediction) occupied by threat regions. The threat regions are  

determined by the PITS++ 

IED threat values. An area 

coverage of 10% looks at 

the top 10% of cells that 

have the highest IED 

attractiveness value.  In 

general, the more rapidly 

the pseudo-ROC curve 

rises, the better the 

predictor. 

 

A random predictor has a 

curve close to the diagonal, 

which is drawn in the plots 

as a solid black line. We 

also plot the curves that 

mark 2-standard deviations 

from the  

random predictor as dotted 

lines around the diagonal 

(Figure 4). For a predictor 

to be statistically better 

than the random predictor, 

its curve should be above 

the upper dotted line. 

 

Figure 4 shows the 

resulting ROC curves for 

the chaotic, partially 

correlated, and correlated 

data sets. For each of these, 

two figures are drawn: one 

indicating the results with 

retouch and for PITS 

without any retouch. In 

addition we present the 

curve Y = X, which 

indicates a random 

prediction. The X-axis  

denotes the area coverage 

for the prediction. So 0.1 

represents a prediction 

within 10% of the map 

whereas 1 represents all 

area. The Y-axis denotes 

the accuracy of the 

 

 

 
Figure 4: ROC curves for the chaotic (top), the 

correlated (middle), and the partially correlated 

(bottom) data sets with similarity threshold at 0.75. 



prediction. So, for example, the random predictor achieves 100% prediction only 

when 100% of the area is covered. Therefore, the results when comparing the two 

curves are particularly interesting for lower values of X or at the very least to the first 

X-point where Y=1 is achieved. Overall a good comparison of the performance is the 

area under their curves. We compare the ratio: area(CBR)/area(non-CBR). 

 

The results are as follows: for the correlated dataset the curve for the CBR is always 

above the non-CBR approach until X = 0.7. The ratio of the CBR over the non-CBR 

is 77.7% if we consider only the areas until both curves reaches Y = 1 (i.e., X = 0.7). 

The ratio reduces to 66.6% if we count all area between X = 0 and X = 1. For the 

partially correlated, the performance is the same for both CBR and non-CBR until X 

= 0.3. Between 0.3 and 0.9 the CBR performance improves over the non-CBR and 

they are tied again between 0.9 and 1. The ratio of the CBR over the non-CBR is 

86.2% and it augments to 82% if we consider only the areas until both curves reaches 

Y = 1 (i.e., X = 0.9). Although it is noteworthy that with CBR it reaches 1 at X = 0.4 

whereas non-CBR reaches 1 only at X = 0.9. Finally for chaotic both curves are the 

same and only in the interval [0.2, 0.4] the non-CBR does slightly better. However, 

the ratio of the non-CBR over the CBR is only 98.8% and it augments to only 97.2% 

if we consider only the areas until both curves reaches Y = 1 (i.e., X = 0.5). We made 

only one run with each data set because the system behaves deterministically: with the 

same input sequence of events, PITS and the CBR retouching algorithm produces the 

same values. The random predictor may produce multiple values, but on average it 

produces the y=x curve shown in our analysis. 

 

We ran student t-tests on the results obtained from the experiments comparing the 

data points for the normal versus the retouched results. The difference in score for the 

chaotic data set is not significant (t-test score: 87%), for the correlated data set is 

significant (t-test score: 99.7%), and for the partially correlated data set is significant 

(t-test score: 98.6%).  In conclusion, if there is a co-relation between the geographical 

and the non-geographical features, -even if only partial- the CBR retouch will 

improve the performance of the prediction. If there is no co-relation the CBR retouch 

would have a negligible negative impact on the prediction. 

 

5   Related Work 

Related approaches can be divided into three kinds: time prediction from time series, 

prediction from influence maps, and case-based prediction. We briefly discuss each 

insofar as to contrast with our approach. Each of these has been the subject of 

extensive and well-established research. The problem of prediction from time series 

in its most simple form can be defined as to obtain a time range prediction [t,t’] for an 

event from a history of event in time t1, t2, .., tn [8]. This is a well-founded field. 

Some methods assume an implicit model for time series while others assume an 

explicit model. The problem of IED time prediction is dependent on geographical, 



human terrain, and attack-specific features, for which, to the best of our knowledge, 

no time prediction model exists capable of incorporating all of these kinds of features. 

 

Influence maps is a method for spatial analysis which receives as input a series of 

events e1 ,e2, .., en and their location in a map [1,2]. These events do not necessarily 

have time stamps; just the locations in the map where they occur and some additional 

information (e.g., type of event). Based on these locations, regions or influence zones 

are found. Within an influence zone, cells may have different weights reflecting more 

or less influence from the events in the cell. These weights are typically represented 

with colors for visualization purposes. In influence maps the geographical location 

(e.g., the “x,y” coordinates) play a significant role in how the regions are determined. 

Whereas indeed the graphical locations are important, our work aims to find common 

geographical features between attacks rather than just the “x,y” location. Moreover, 

we want to incorporate non-geographical features (i.e., human terrain and attack-

specific) into the process of determining these regions. Again, to the best of our 

knowledge no work exists accomplishing this. 

 

Case-based prediction refers to the use of case-based reasoning (CBR) as the 

prediction technique [9,10,11,12,13,14]. Predictions in CBR include time prediction 

as well as class prediction (e.g., predict the kind of object based on partial 

observations), and strategy prediction (e.g., predicting the next movement from an 

opponent) among others. The difficulty of using CBR for IED prediction is that 

events might be related at different and contrasting levels (e.g., they might be 

geographically close but rather different from the perspective of the human terrain).  

Therefore, instead of tackling the whole problem with CBR we aim at using CBR for 

making predictions with the non-geographical features and combine this prediction 

with the one from the PITS system which models the geographical features. 

Analogously, adding all features to the PITS model, which is in essence the approach 

taken in Liu and Brown [3], would introduce the curse of dimensionality. This is a 

well documented limitation of value function approximation algorithms [15]. 

 

Case-based reasoning has been combined with value function approximation 

algorithms such as reinforcement learning [16,17,18,19] and neural networks [20,21]. 

The particular value function approximation algorithm developed in PITS++ has been 

shown to be particularly useful for spatial event prediction and, therefore, a suitable 

base line to measure performance gains by using case-based reasoning techniques. 

6   Conclusions 

One major aspect of defeating the use of IEDs is defeating the device itself. There has 

been intensive effort devoted to combining sensor data of various types to identify 

those who planted the IEDs. There are several limitations in those approaches. First, it 

typically tries to identify the emplacers after the attack. In other words, the current 

work is post-mortem and reactive in nature rather than predictive and proactive. 

Second, this work has been heavily relying on a human expert to perform the 



historical pattern analysis and recognition. There is an outcry for predictive 

algorithms that operate in an autonomous or semi-autonomous manner. Third, this 

work has limited ability to fuse all potential data sources (geospatial and temporal 

event information, social and cultural data, coalition traffic patterns, multi-spectral 

sources of sensor data, etc).  Existing methods could be used by adding all necessary 

features into a given value function approximation algorithm. However, this will incur 

the curse of dimensionality. 

 

We presented an alternative approach in PITS++ for spatial event prediction that 

combines function value estimation and a case-based prediction. PITS, the function 

value estimation predictor, contributes with its capability to reason with geographical 

features such as the (x,y) coordinates of an event. We enhance this capability by using 

case-based reasoning techniques to model non-geographical features such as the time 

of the event or trigger mechanism of the IED. Cases capture, in essence, instances of 

correlations between geographical and non-geographical features. This correlation is 

exploited by our system to update the geographical prediction of PITS. We observed 

that this update results in a significant improvement of the accuracy in the empirical 

prediction compared to pure geographically-based predictions when there is some 

correlation between the geographical and the non-geographical features in the input 

event traces. In the worst scenario, when no such a co-relation exists, CBR does not 

help but it is not detrimental either. We support these claims with an experiment on an 

ablation study for the prediction of improvised explosive device (IED) attacks.  

 

There are several directions that we want to explore in the future. First, there was little 

tuning in the CBR component. In particular, each local similarity metric was assigned 

the same weight. It is conceivable that further improvements in the prediction 

performance can be achieved if weights are tuned by, for example, performing 

statistical analysis of the data. Second, the integration between the value function 

approximation and the CBR prediction is one way; the CBR retouching process does 

not permanently change the PIT values. Instead, it is currently designed to perform 

the CBR retouch on the PIT values every time a new prediction is needed. We need to 

investigate what would be the implication of keeping the retouched PIT values; 

particularly what does this means for the value function approximation process. Third, 

we would like to perform an evaluation with real data. For the current evaluation we 

used simulated data because of the unavailability of adequate real data at the time of 

the study. Although public data exists about IED attacks, this contains mostly 

geographical features. Fourth, all features currently used in the study were manually 

given based on interviews with Subject Matter Experts. A potential research direction 

is to learn such features by extracting them from raw IED data (e.g., from a repository 

of field reports). Fifth, the values of parameters in the retouch formula (Formula 2) 

are currently set manually. A potential research direction is to use Bayesian or other 

methods to learn these parameters. Sixth, we would like to investigate time prediction 

of IED events, building on existing work for explicit representations and reasoning 

methods for temporal events. 
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