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Abstract 

This paper presents RepairSHOP a system capable of 
performing plan adaptation and plan repair. RepairSHOP is 
built on top of the HTN planner SHOP. RepairSHOP has 
three properties. The first property is its design modularity, 
which  makes it is straightforward to apply the same process 
discussed in this paper to build plan adaptation capabilities 
in other HTN planners. Second, RepairSHOP can perform 
plan repair. Third, RepairSHOP takes into account failed 
traces during plan adaptation/repair. As a result, it can result 
in improvements in running time performance. We 
performed experiments demonstrating performance gains of 
plan adaptation over plan generation from the scratch, 
measured in CPU time for problem solving.1  

Introduction 

Plan adaptation is a problem-solving technique in which 
existing plans are modified to solve new problems. As 
such, it is a central part of case-based planning research 
(Cox and Muñoz-Avila, 2006).  Plan adaptation has played 
a central part in research on case-based planning 
applications, such as manufacturing (Muñoz-Avila & 
Weberskirch, 1996) and military planning (Mitchell 1997). 

Hierarchical task network (HTN) planning is an 
important, frequently studied research topic. Researchers 
have reported work on its formalisms and applications 
(Nau et al., 2005). In HTN planning, high-level tasks are 
decomposed into simpler tasks until a sequence of 
primitive actions solving the high-level tasks is generated. 
HTN planning is a natural representation for many real-
world domains, including military planning (Mitchell, 
1997), to encode strategies in computer games (Smith et 
al., 1998), and manufacturing processes (Nau et al., 2005). 

Although work has been published on adaptation of 
hierarchical plans (Paolucci et al, 1999), the known 
adaptation approaches are tightly coupled to the particular 
representation or application for which they were 
developed.  Therefore, it is difficult to use these 
approaches for general HTNs. Furthermore, these 
approaches use only the traces that led to the solution. 
Failed traces that might have been explored during 
problem solving are not taken into account during plan 
adaptation. Therefore, the plan adaptation process may 
expend resources exploring parts of the search space that 
have already been shown to lead to failure during the initial 
problem solving process. 
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In this paper we present RepairSHOP, a plan adaptation 
algorithm build on top of the HTN planner SHOP, which 
implements a variant of HTN planning called Ordered 
Task Decomposition. In this variant tasks are totally 
ordered and conditions are evaluated relative to the current 
state of the world, which is updated during planning. 
RepairSHOP has three novel characteristics: first, it is built 
on a modular system called the goal graph system. As a 
result, it is easy to apply the same process discussed in this 
paper to build plan adaptation capabilities in other variants 
of HTN planning. Second, RepairSHOP can also perform 
plan repair; That is, RepairSHOP is able to modify an 
existing plan on-the-fly when the situation in the world 
changes. Third, RepairSHOP records failed traces during 
the HTN planning process. This information can be 
exploited to improve running time performance during 
plan repair/adaptation. We performed experiments 
demonstrating performance gains of plan adaptation with 
RepairSHOP over plan generation from the scratch with 
SHOP, measured in CPU time for problem solving. 

Preliminaries 

To perform hierarchical decomposition, we follow the 
principles of Hierarchical Task Network (HTN) planning 
as in the SHOP system (Nau et al., 2005). HTN planning 
achieves complex tasks by decomposing them into simpler 
subtasks. Planning continues by decomposing the simpler 
tasks recursively until tasks representing concrete actions 
are generated. These actions form a plan achieving the 
high-level tasks.  

The main knowledge artifacts that indicate how to 
decompose tasks are called methods. A method, M, is a 3-
tuple: (h,Q,ST), such that: h, called the head of M, is the 
task being decomposed; Q, called the conditions, are the 
preconditions required for using the method; and ST is the 
list of subtasks achieving h. The tasks in ST are totally 
ordered according to the order they are listed.  

To achieve a task that can be decomposed (called a 
compound task), an HTN planner searches for applicable 
methods. A method M is applicable to a compound task t, 
relative to a state S (a set of ground atoms), iff match(h,t) 
(i.e., h and t have the same predicate and arity, and a 
consistent set of bindings Θ exists, which maps variables to 
constants so that all terms in h match their corresponding 
ground terms in t) and Q are satisfied by S (i.e., there exists 
a consistent extension Θ' of Θ such that ∀q∈Q {qΘ'∈S} 
and ∀¬q∈Q {qΘ'∉S}). To achieve a task that represents an 
action (called a primitive task), HTN planners use 



operators. An operator O is of the form (h,al,dl), such that: 
h (the operator's head) is a primitive task, and al and dl are 
the so-called add-list and delete-list. The two lists define 
how the operator will transform the current state S when 
applied: every atom in the add-list is added to S and every 
atom in the delete-list is removed from S. An operator O is 
applicable to a primitive task t, relative to a state S, iff 
match(h,t).  

A planning problem is a triple (T,S,D), where T is a set 
of tasks, S is a state, and D is a planning domain theory -- 
a collection of methods and operators. Since D is fixed, we 
refer to problems as pairs (T,S) hereon. A plan is a totally 
ordered collection of primitive tasks. Informally, given a 
planning problem (T,S), the collection of primitive tasks 
that decompose all compound tasks in T, relative to S and 
D, is a correct plan (Nau et al., 2005). Besides generating a 
plan for a planning problem, we are also interested in the 
hierarchical task network (HTN) that led to the plan. The 
plan can be obtained by performing a pre-order traversal of 
the resulting HTN collecting all primitive tasks along the 
way. Formally, an HTN is defined as follows:  

• An expression of the form t
h
 is an HTN, where 

t
h 

is a task, which is represented as a logical 
atom.  

• An expression of the form (t
h
,(T1,…,Tm)) is an 

HTN, where t
h
 is a task and T1,…,Tm are HTNs. 

The task network indicates that t
h
 is 

decomposed into T1,…,Tm. Tasks are achieved 
in the order they are listed. 

A case (T,S,GG)  is defined as a collection of tasks T, a 
state S, and a graph structure GG, called the goal graph. 
The goal graph GG represents the HTN generated when 

solving  (T,S), augmented by other relations. We will 
explain the goal graph in detail later.  

Overview of  Adaptation Procedure 

The adaptation procedure, RepairSHOP, receives as 
input a case (T,S,GG) and a new problem (T’,S’), and 
reuses the case’s GG to generate an HTN for the new 
problem. GG captures dependencies between elements in 
the HTN solving (T,S). These dependencies are evaluated 
relative to (T’,S’) resulting in  a partial HTN that is 
enhanced by using standard HTN planning techniques. 

Our motivation for integrating the goal graph with SHOP 
was to enable plan adaptation. SHOP has no intrinsic 
method of determining the effect of a change on its 
conditions aside from reformulating the entire plan. We 
proposed incorporating a structure, the goal graph, to 
maintain the dependencies among the SHOP task nodes 
that allows SHOP to monitor changes in a task’s conditions. 
This structure propagates  changes in conditions to the 
appropriate task nodes, allowing SHOP to replan the 
affected sections.  

The Goal Graph 

The goal graph was conceived to augment SHOP with 
replanning capabilities. The goal graph takes the form of a 
directed dependency graph with a one-to-one mapping 
between each goal in the graph and each task in SHOP.  

 There are a number of different possible representations 
of a hierarchical goal structure that maintain a one-to-one 
correspondence between goals in the goal graph and tasks 
in SHOP. Based on our previous work (e.g., (Muñoz-Avila 

Figure 1: Snapshot of the goal graph 



& Weberskirch, 1996)), we chose to implement the 
REDUX architecture (Petrie, 1991). Redux combines the 
theory of Justification-based Truth Maintenance System 
(JTMS) and Constrained Decision Revision (CDR). In a 
Truth Maintenance System (TMS), assertions (called nodes) 
are connected via a tree-like network of dependencies. The 
combination of JTMS and CDR provides the ability to 
perform dependency-directed backtracking, which is 
adopted in GG to propagate changes. 

In JTMS, each assertion is associated with a justification 
(Doyle, 1979). A justification consists of two parts: an IN-
list and an OUT-list. Both the IN-list and OUT-list of a 
justification are sets of assertions. The assertions in the IN-
list are connected to the justification by “+” links, while 
those in OUT-list are linked by “-” links. The validation of 
an assertion is supported by the justification that it is 
associated with, i.e., an assertion is believed when it has a 
valid justification. A justification is valid if every assertion 
in its IN-list is labeled “IN” and every assertion in its 
OUT-list is labeled “OUT”. If the IN- and OUT-lists of a 
justification are empty, it is called a premise justification, 
which is always valid. A believable assertion in JTMS is 
labeled “IN”, and an assertion that cannot be believed is 
labeled “OUT”. To label each assertion, two criteria about 
the dependency network structure need to be met: 
consistency and well-foundness. Consistency means that 
every node labeled IN is supported by at least one valid 
justification and all other nodes are labeled OUT. Well-
foundness means that if the support for an assertion only 
depends on an unbroken chain of positive links (“+” links) 
linking back to itself, then the assertion must be labeled 
OUT. A node is labeled IN when it has a valid justification, 
i.e., the assertions in the IN-list of the justification are all 
labeled IN, and the assertions in the OUT-list of the 
justification are all labeled OUT. A node is labeled OUT if 
either it has an invalid justification (which means that 
either some assertions in the IN-list are labeled OUT, or 
some in the OUT-list are labeled IN, or both situations 
occur), or it has no associated justification that supports it. 

The goal graph represents relations between goals, 
operators and decisions. A goal is decomposed into 
subgoals by applying an operator. The applied operator is 
called a decision. The assignments represent conditions for 
applying the operator. 

Figure 1 shows a snapshot of our implementation of the 
goal graph. A goal may have several decisions, one for 
each possible operator that can achieve the goal. In the 
goal graph, decisions decompose goals into the subgoals. 
A decision contains a goal list, storing all the subgoals of 
the goal. Assignments needed for applying the decision to 
the goal are collected in an assignment list, which is also 
contained in the decision.  

A JTMS mechanism is built on the goal graph. A 
decision is valid if all the assignments in its assignment list 
are valid, and all the subgoals in its goal list are valid. A 
valid decision will be labeled “IN”. For a goal, all the 
decisions in its decision list labeled “IN” are applicable, 
which means the goal can be decomposed by those valid 

decisions. If for some reason the validity of some 
assignments of a valid decision change, then that decision 
may become invalid as well.  

Repair-SHOP: Adapting HTNs 

We mapped the elements of HTN plans into goals graphs 
(see Table 1). This allows us to construct the goal graph 
automatically during HTN planning. Because tasks are 
decomposed into subtasks, tasks were mapped into goals. 
A task may be associated with some resources. These 
resources are mapped as assignments in GG. Ordering 
relationships between tasks are also mapped into 
assignments.  

The mapping of HTNs into goal graphs results in the 
following dependencies represented in the goal graph: 
 
• Subtasks depend on their parent tasks 
• Methods/operators depend on the tasks they 

decompose/achieve. 
• Subtasks depend on the method introducing them 
• Decisions depend on the task they accomplish 
• Preconditions and task orderings depend on the 

decision that added them 

Table 1: Map of HTNs into GG 

                 HTNs        Goal Graph 

                  Task            goal 

                Subtask          subgoal 

         preconditions         assignment 

        Subtasks orderings         assignment 

               Method          operator 

              Operator          operator 

 These dependencies determine the next elements that are 
accessed in the JTMS-propagation process. The advantage 
of using the goal graph alongside SHOP is that goal graphs 
preserve information about the state of the plan for each 
task and subtask that SHOP attempts to solve. Leaves in 
the goal graph correspond to primitive tasks in the HTN. 
Internal nodes in the goal graph correspond to compound 
tasks in SHOP, culminating in the original compound task 
at the root of the goal graph. Repair-SHOP can return to an 
arbitrary planning state by navigating in the goal graph. 
Repair-SHOP adds overhead to the HTN planning process 
as shown in the experimental evaluation. 

 Because the  goal graph is constructed during planning, 
Repair-SHOP constructs justifications for branches where 
a failure might occur (and thus require backtracking). 
These justifications are conjunctions of assignments that 
couldn’t be fulfilled and caused the decision to fail. When 
backtracking occurs these justifications are propagated 
until a goal is reached where an alternative decision can be 
explored. At this point the justifications are added to the 
failed decision and are checked during replanning. 

To construct the goal graph on-the-fly, SHOP was 
expanded as follows: 

• As each task is obtained from the beginning of the 
task list T’, a goal is created to encapsulate that task. 



The goal’s identifier name is assigned as the string 
representation of that task. The goal is then added to 
the parent goal list. 

• For primitive tasks, the planner is recursively called 
for the remainder of the task list. If the planner 
returns successfully, the new goals (which may 
contain goal trees of their own) are added to the 
parent goal list. 

• For compound tasks, each possible reduction is 
considered in turn. Each reduction is encapsulated 
in a new decision, with the decision’s identifier 
name containing the string representation of the task 
being reduced. Each reduction’s conditions are 
stored in that decision’s assignment list. If a 
reduction succeeds, its plan is added to the 
decision’s goal list. If a reduction does not succeed, 
its decision is marked OUT. 

• If a compound task succeeds in choosing a decision, 
and there are additional decisions left untried, these 
are all marked NULL. This signals to Repair-SHOP 
that the decisions were not evaluated but that they 
might be revisited in the future. 

Repair-SHOP’s operation is straightforward. When 
Repair-SHOP monitors a change in conditions, it 
propagates the result to the highest affected goal. It then 
checks to see if an alternate decision (one previously 
marked NULL) is available from that goal. If no alternate 
decision is available, GoalGraph navigates up the tree, 
returning the first available alternate decision from the 
nearest goal node. If an alternate decision is eventually 
found, replanning is potentially possible. The pseudo-code 
of this process, called adjustGoalGraph, is shown below. 

Repair-SHOP then obtains the stored SHOP state from the 
chosen alternate decision. It then restores the saved SHOP 
state and restarts SHOP’s planning algorithm. The effect is 
the same as if SHOP had been planning along this path 
from the beginning. If the plan is not successful, Repair-
SHOP searches for a new alternate decision. If it is 
successful, the returned plan is saved as a new subplan. 
This new subplan is then spliced into the original plan 
beginning with the first affected goal node. 

 
adjustGoalGraph(G, S, GG) 
// Input: G is a goal; S is the current state; GG is the 

goal graph;  
// Output: GG is updated with a valid alternative for G, 

if any exists 
 
    0. O � currentOperator(G,GG)  
    1. if invalidOperator(G,D,S) then  label(O, OUT) 
    2  else return GG 
    3. if a valid operator, OG of G with state S exists then 
    4.  select (G, OG, GG) 
    5.  label(OG, IN) 
    6.  return GG 
    7. else 
    8.  label(G, OUT) 
    9.  P � parent(G, GG) 
   10.  return adjustGoalGraph (P, S, GG) 
 

The adjustGoalGraph algorithm operates as follows. First, 
the operator achieving the goal G is obtained (Step 0). 
When the operator is invalid (e.g., if the goal is a 
compound task, and its method is not applicable in S), the 
operator O for G will be labeled as invalid (Step 1). 

Figure 2: Goal graph after repair 



Otherwise the algorithm terminates (Step 2). If a valid 
alternative operator OG exists, OG is labeled as valid, and 
GG is updated to record the modifications (Steps 3-6). If 
there are no alternative goals available, which means G 
cannot be repaired (Step 7), then a recursive call is made 
with the parent goal of the current goal to propagate the 
effect of T’s loss of validity (Steps 9-10). 

In summary, adjustGoalGraph propagates the result of 
the change towards the root via the goal graph. We close 
this section by making two notes about the Repair-SHOP 
procedure: 

1. Repair-SHOP must notify all nodes of any change 
in assignment synchronously. This is necessary 
because certain plans may require the same 
condition in more than one place, and all instances 
of the same condition must remain consistent. The 
synchronous updates are done by looping through 
the list of identical assignment nodes stored in a 
specialized data structure. 

2. Even though there are multiple valid decisions, they 
may be marked NULL. This reflects the fact that 
typically the planner stops considering alternatives 
once one is found to be successful. During 
adaptation, adjustGoalGraph must therefore 
examine the validity of alternative decisions should 
the one currently selected fail. 

Example 

We now discuss a sample run of the Repair-SHOP system 
incorporating both the goal graph and SHOP. The plan 
under consideration is a shipping problem where the 
computer must determine a way to move a package from 
City A to City B using an HTN version of the logistics 
transportation domain (Veloso, 1994). A typical problem 
in this domain is to place the objects at different locations, 
starting from a configuration of objects, locations, and 
transportation means. There are different sorts of locations 
and means of transportation. The means of transportation 
have certain operational restrictions. For example, a truck 
can only be moved between two places located within the 
same city.  

The goal graph shown in Figure 1 shows two alternative 
decisions for the task  (achieve-goal (obj-at package1 
location4)). These decisions are decomposing the task into: 
(1) (!fly-airplane plane2 airport3) (achieve-goal (obj-at 
package1 location4)), and (2)  (!fly-airplane plane1 
airport3) (achieve-goal (obj-at package1 location4)). 
location4 is in the same city as airport3 (not shown in 
Figure 1). Therefore, these two alternatives relocate the 
plane containing package1 in airport3, from where 
package1 can be relocated to location4. The first decision 
is selected in the goal graph (labeled IN).  
 Now suppose that this goal graph is stored in a case and 
that a new problem is given whose task is the same as the 
one in the case and whose initial state is almost identical –  
with the one exception that plane2 is not available. Repair-
SHOP will reconstruct the goal graph relative to the new 

problem, thereby sparing the need for SHOP to search for 
an HTN. When it reaches the first decision of the task   
(achieve-goal (obj-at package1 location4)), it notes that 

this decision is not valid. As a result, adjustGoalGraph is 
called, with the goal graph goal corresponding to this task. 
adjustGoalGraph finds that the second decision is valid 
and labels it accordingly. The resulting goal graph is 
shown in Figure 2. 

Empirical Evaluation  

We conducted experiments to measure (1) the overhead 
added to the first-principles planning process by 
constructing the goal graph, (2) any gains in problem-
solving performance of adapting the plans, and (3) the 
percentage of steps in original HTN retained. The domain 
was the logistics transportation domain.  

In order to evaluate Repair-SHOP’s performance as 
compared to SHOP, we ran a series of experiments to test 
its execution time and ability to handle plan adaptation on 
different problem spaces. We obtained a series of 20 
problems Pi using a custom-designed random problem 
generator and solved them using SHOP, while 
automatically constructing the goal graph. A collection of 
20 new problems Pi’ were generated by taking each 
problem Pi, randomly choosing a condition, and removing 
it from the initial state. We measured the time required by 
SHOP to solve each Pi’, the time required by SHOP to 
solve P’ while generating the goal graph, the time required 
to replan by Repair-SHOP to solve each Pi’ by adapting the 
goal graph generated for Pi, and the number of steps 
retained. Since time measurements change between runs, 
we report the average over 5 runs. The tests were 
performed on a 2.5 GHz Pentium 4 computer running 
Windows XP and executing code within JBuilder. Figure 
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Figure 3: Empirical results 



3 summarizes the results. The top figure compares the 
running times and the bottom figure indicates the 
percentage of steps retained after adaptation. 

Several facts can be observed from this figure. First, we 
confirmed that constructing the goal graph causes an 
overhead to the plan generation process. As a result 
SHOP+GG generally takes longer than SHOP to generate 
plans. This was not unexpected, given the additional 
overhead required. Second, we observed that in most 
problems the time to replan by Repair-SHOP is smaller 
than SHOP. The only exceptions were problems in which 
no steps were retained. Noteworthy is Problem # 13 in 
which no steps were retained. However, on average the 
improvement RepairSHOP took 63.7%  of the time it took 
SHOP to solve the same problems (10.7 seconds versus 
16.9 seconds). An average of 27.2% of the steps from the 
original plan where retained in the final solution. Although 
admittedly, the problems in Pi where very similar to the 
ones in Pi, the results however show the  potential for 
speed-up in problem solving by adapting HTNs.   

Related Work 

This work is heavily inspired by work on plan adaptation 
that takes into account the path leading to a solution and 
failure traces (Veloso, 1994). During problem-solving, a 
first-principles planner may explore branches of the search 
space that resulted in failures. These failures  together with 
the path that led to a solution are stored in the case. Such 
information was first implemented for a state-space 
planner (Veloso, 1994), and later implemented for partial-
order planners (Muñoz-Avila & Weberskirch, 1996). Plan 
adaptation of hierarchical plans has been proposed before 
(Kambhampati & Hendler, 1992; Muñoz-Avila et al., 
2001). Whereas these works use the path that led to the 
solution, the distinguished characteristic of RepairSHOP is 
that it takes into account failure traces as well. 

RepairSHOP can be used to perform plan repair. In plan 
repair an existing plan must be modified because of 
changes in the world conditions (van der Krogt et al., 
2005). In fact, our experiments illustrate plan repair 
capabilities as well as plan adaptation because the tasks are 
the same and what changes is the initial state. The 
RETSINA system (Paolucci et al, 1999) repairs 
hierarchical plans in the context of a multi-agent system. 
However, it does not takes into account failed traces.  

We have not discussed the topic of similarity and in 
particular its impact on adaptation for the sake of focus. 
The strong relation between the retrieval and adaptation 
effort is well known (Veloso, 1994). 

Final Remarks 

Repair-SHOP, the result of the integration of the goal 
graph system and SHOP, is a powerful tool that allows   
plan adaptation and plan repair, facilitating using SHOP in 
dynamic environments. Although creating the goal graph 
requires a certain amount of overhead, the costs are greatly 

outweighed by the benefits of the plan adaptation and 
replanning capabilities. While Repair-SHOP is now a 
complete system, there are still areas in which it could be 
upgraded or improved. Currently, only replanning from 
invalidated assignments has been implemented. Therefore, 
the system can only consider situations when conditions in 
the case are missing. Clearly, it would be desirable to 
consider situations where new conditions are added (e.g., 
additional resources are made available).  

One possible application of our system could be to allow 
computer-controlled units to react to changes in the 
environment in a sensible way. Hierarchical planning in 
this area has already been explored (Hoang et al., 2005). 
Many games include decision trees for research, 
manufacturing, or combat where one objective must be 
completed for another to be possible.  
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