
Adaptation of Hierarchical Task Network Plans

Ian Warfield, Chad Hogg, Stephen Lee-Urban, Héctor Muñoz-Avila

Department of Computer Science and Engineering, Lehigh University

{ipw2, cmh204, sml3, hem4}@lehigh.edu

Abstract

This paper presents RepairSHOP a system capable of
performing plan adaptation and plan repair. RepairSHOP is
built on top of the HTN planner SHOP. RepairSHOP has
three properties. The first property is its design modularity,
which makes it is straightforward to apply the same process
discussed in this paper to build plan adaptation capabilities
in other HTN planners. Second, RepairSHOP can perform
plan repair. Third, RepairSHOP takes into account failed
traces during plan adaptation/repair. As a result, it can result
in improvements in running time performance. We
performed experiments demonstrating performance gains of
plan adaptation over plan generation from the scratch,
measured in CPU time for problem solving.1

Introduction

Plan adaptation is a problem-solving technique in which
existing plans are modified to solve new problems. As
such, it is a central part of case-based planning research
(Cox and Muñoz-Avila, 2006). Plan adaptation has played
a central part in research on case-based planning
applications, such as manufacturing (Muñoz-Avila &
Weberskirch, 1996) and military planning (Mitchell 1997).

Hierarchical task network (HTN) planning is an
important, frequently studied research topic. Researchers
have reported work on its formalisms and applications
(Nau et al., 2005). In HTN planning, high-level tasks are
decomposed into simpler tasks until a sequence of
primitive actions solving the high-level tasks is generated.
HTN planning is a natural representation for many real-
world domains, including military planning (Mitchell,
1997), to encode strategies in computer games (Smith et
al., 1998), and manufacturing processes (Nau et al., 2005).

Although work has been published on adaptation of
hierarchical plans (Paolucci et al, 1999), the known
adaptation approaches are tightly coupled to the particular
representation or application for which they were
developed. Therefore, it is difficult to use these
approaches for general HTNs. Furthermore, these
approaches use only the traces that led to the solution.
Failed traces that might have been explored during
problem solving are not taken into account during plan
adaptation. Therefore, the plan adaptation process may
expend resources exploring parts of the search space that
have already been shown to lead to failure during the initial
problem solving process.

1
 Copyright © 2007, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

In this paper we present RepairSHOP, a plan adaptation
algorithm build on top of the HTN planner SHOP, which
implements a variant of HTN planning called Ordered
Task Decomposition. In this variant tasks are totally
ordered and conditions are evaluated relative to the current
state of the world, which is updated during planning.
RepairSHOP has three novel characteristics: first, it is built
on a modular system called the goal graph system. As a
result, it is easy to apply the same process discussed in this
paper to build plan adaptation capabilities in other variants
of HTN planning. Second, RepairSHOP can also perform
plan repair; That is, RepairSHOP is able to modify an
existing plan on-the-fly when the situation in the world
changes. Third, RepairSHOP records failed traces during
the HTN planning process. This information can be
exploited to improve running time performance during
plan repair/adaptation. We performed experiments
demonstrating performance gains of plan adaptation with
RepairSHOP over plan generation from the scratch with
SHOP, measured in CPU time for problem solving.

Preliminaries

To perform hierarchical decomposition, we follow the
principles of Hierarchical Task Network (HTN) planning
as in the SHOP system (Nau et al., 2005). HTN planning
achieves complex tasks by decomposing them into simpler
subtasks. Planning continues by decomposing the simpler
tasks recursively until tasks representing concrete actions
are generated. These actions form a plan achieving the
high-level tasks.

The main knowledge artifacts that indicate how to
decompose tasks are called methods. A method, M, is a 3-
tuple: (h,Q,ST), such that: h, called the head of M, is the
task being decomposed; Q, called the conditions, are the
preconditions required for using the method; and ST is the
list of subtasks achieving h. The tasks in ST are totally
ordered according to the order they are listed.

To achieve a task that can be decomposed (called a
compound task), an HTN planner searches for applicable
methods. A method M is applicable to a compound task t,
relative to a state S (a set of ground atoms), iff match(h,t)
(i.e., h and t have the same predicate and arity, and a
consistent set of bindings Θ exists, which maps variables to
constants so that all terms in h match their corresponding
ground terms in t) and Q are satisfied by S (i.e., there exists
a consistent extension Θ' of Θ such that ∀q∈Q {qΘ'∈S}
and ∀¬q∈Q {qΘ'∉S}). To achieve a task that represents an
action (called a primitive task), HTN planners use

operators. An operator O is of the form (h,al,dl), such that:
h (the operator's head) is a primitive task, and al and dl are
the so-called add-list and delete-list. The two lists define
how the operator will transform the current state S when
applied: every atom in the add-list is added to S and every
atom in the delete-list is removed from S. An operator O is
applicable to a primitive task t, relative to a state S, iff
match(h,t).

A planning problem is a triple (T,S,D), where T is a set
of tasks, S is a state, and D is a planning domain theory --
a collection of methods and operators. Since D is fixed, we
refer to problems as pairs (T,S) hereon. A plan is a totally
ordered collection of primitive tasks. Informally, given a
planning problem (T,S), the collection of primitive tasks
that decompose all compound tasks in T, relative to S and
D, is a correct plan (Nau et al., 2005). Besides generating a
plan for a planning problem, we are also interested in the
hierarchical task network (HTN) that led to the plan. The
plan can be obtained by performing a pre-order traversal of
the resulting HTN collecting all primitive tasks along the
way. Formally, an HTN is defined as follows:

• An expression of the form t
h
 is an HTN, where

t
h

is a task, which is represented as a logical
atom.

• An expression of the form (t
h
,(T1,…,Tm)) is an

HTN, where t
h
 is a task and T1,…,Tm are HTNs.

The task network indicates that t
h
 is

decomposed into T1,…,Tm. Tasks are achieved
in the order they are listed.

A case (T,S,GG) is defined as a collection of tasks T, a
state S, and a graph structure GG, called the goal graph.
The goal graph GG represents the HTN generated when

solving (T,S), augmented by other relations. We will
explain the goal graph in detail later.

Overview of Adaptation Procedure

The adaptation procedure, RepairSHOP, receives as
input a case (T,S,GG) and a new problem (T’,S’), and
reuses the case’s GG to generate an HTN for the new
problem. GG captures dependencies between elements in
the HTN solving (T,S). These dependencies are evaluated
relative to (T’,S’) resulting in a partial HTN that is
enhanced by using standard HTN planning techniques.

Our motivation for integrating the goal graph with SHOP
was to enable plan adaptation. SHOP has no intrinsic
method of determining the effect of a change on its
conditions aside from reformulating the entire plan. We
proposed incorporating a structure, the goal graph, to
maintain the dependencies among the SHOP task nodes
that allows SHOP to monitor changes in a task’s conditions.
This structure propagates changes in conditions to the
appropriate task nodes, allowing SHOP to replan the
affected sections.

The Goal Graph

The goal graph was conceived to augment SHOP with
replanning capabilities. The goal graph takes the form of a
directed dependency graph with a one-to-one mapping
between each goal in the graph and each task in SHOP.

 There are a number of different possible representations
of a hierarchical goal structure that maintain a one-to-one
correspondence between goals in the goal graph and tasks
in SHOP. Based on our previous work (e.g., (Muñoz-Avila

Figure 1: Snapshot of the goal graph

& Weberskirch, 1996)), we chose to implement the
REDUX architecture (Petrie, 1991). Redux combines the
theory of Justification-based Truth Maintenance System
(JTMS) and Constrained Decision Revision (CDR). In a
Truth Maintenance System (TMS), assertions (called nodes)
are connected via a tree-like network of dependencies. The
combination of JTMS and CDR provides the ability to
perform dependency-directed backtracking, which is
adopted in GG to propagate changes.

In JTMS, each assertion is associated with a justification
(Doyle, 1979). A justification consists of two parts: an IN-
list and an OUT-list. Both the IN-list and OUT-list of a
justification are sets of assertions. The assertions in the IN-
list are connected to the justification by “+” links, while
those in OUT-list are linked by “-” links. The validation of
an assertion is supported by the justification that it is
associated with, i.e., an assertion is believed when it has a
valid justification. A justification is valid if every assertion
in its IN-list is labeled “IN” and every assertion in its
OUT-list is labeled “OUT”. If the IN- and OUT-lists of a
justification are empty, it is called a premise justification,
which is always valid. A believable assertion in JTMS is
labeled “IN”, and an assertion that cannot be believed is
labeled “OUT”. To label each assertion, two criteria about
the dependency network structure need to be met:
consistency and well-foundness. Consistency means that
every node labeled IN is supported by at least one valid
justification and all other nodes are labeled OUT. Well-
foundness means that if the support for an assertion only
depends on an unbroken chain of positive links (“+” links)
linking back to itself, then the assertion must be labeled
OUT. A node is labeled IN when it has a valid justification,
i.e., the assertions in the IN-list of the justification are all
labeled IN, and the assertions in the OUT-list of the
justification are all labeled OUT. A node is labeled OUT if
either it has an invalid justification (which means that
either some assertions in the IN-list are labeled OUT, or
some in the OUT-list are labeled IN, or both situations
occur), or it has no associated justification that supports it.

The goal graph represents relations between goals,
operators and decisions. A goal is decomposed into
subgoals by applying an operator. The applied operator is
called a decision. The assignments represent conditions for
applying the operator.

Figure 1 shows a snapshot of our implementation of the
goal graph. A goal may have several decisions, one for
each possible operator that can achieve the goal. In the
goal graph, decisions decompose goals into the subgoals.
A decision contains a goal list, storing all the subgoals of
the goal. Assignments needed for applying the decision to
the goal are collected in an assignment list, which is also
contained in the decision.

A JTMS mechanism is built on the goal graph. A
decision is valid if all the assignments in its assignment list
are valid, and all the subgoals in its goal list are valid. A
valid decision will be labeled “IN”. For a goal, all the
decisions in its decision list labeled “IN” are applicable,
which means the goal can be decomposed by those valid

decisions. If for some reason the validity of some
assignments of a valid decision change, then that decision
may become invalid as well.

Repair-SHOP: Adapting HTNs

We mapped the elements of HTN plans into goals graphs
(see Table 1). This allows us to construct the goal graph
automatically during HTN planning. Because tasks are
decomposed into subtasks, tasks were mapped into goals.
A task may be associated with some resources. These
resources are mapped as assignments in GG. Ordering
relationships between tasks are also mapped into
assignments.

The mapping of HTNs into goal graphs results in the
following dependencies represented in the goal graph:

• Subtasks depend on their parent tasks
• Methods/operators depend on the tasks they

decompose/achieve.
• Subtasks depend on the method introducing them
• Decisions depend on the task they accomplish
• Preconditions and task orderings depend on the

decision that added them

Table 1: Map of HTNs into GG

 HTNs Goal Graph

 Task goal

 Subtask subgoal

 preconditions assignment

 Subtasks orderings assignment

 Method operator

 Operator operator

 These dependencies determine the next elements that are
accessed in the JTMS-propagation process. The advantage
of using the goal graph alongside SHOP is that goal graphs
preserve information about the state of the plan for each
task and subtask that SHOP attempts to solve. Leaves in
the goal graph correspond to primitive tasks in the HTN.
Internal nodes in the goal graph correspond to compound
tasks in SHOP, culminating in the original compound task
at the root of the goal graph. Repair-SHOP can return to an
arbitrary planning state by navigating in the goal graph.
Repair-SHOP adds overhead to the HTN planning process
as shown in the experimental evaluation.

 Because the goal graph is constructed during planning,
Repair-SHOP constructs justifications for branches where
a failure might occur (and thus require backtracking).
These justifications are conjunctions of assignments that
couldn’t be fulfilled and caused the decision to fail. When
backtracking occurs these justifications are propagated
until a goal is reached where an alternative decision can be
explored. At this point the justifications are added to the
failed decision and are checked during replanning.

To construct the goal graph on-the-fly, SHOP was
expanded as follows:

• As each task is obtained from the beginning of the
task list T’, a goal is created to encapsulate that task.

The goal’s identifier name is assigned as the string
representation of that task. The goal is then added to
the parent goal list.

• For primitive tasks, the planner is recursively called
for the remainder of the task list. If the planner
returns successfully, the new goals (which may
contain goal trees of their own) are added to the
parent goal list.

• For compound tasks, each possible reduction is
considered in turn. Each reduction is encapsulated
in a new decision, with the decision’s identifier
name containing the string representation of the task
being reduced. Each reduction’s conditions are
stored in that decision’s assignment list. If a
reduction succeeds, its plan is added to the
decision’s goal list. If a reduction does not succeed,
its decision is marked OUT.

• If a compound task succeeds in choosing a decision,
and there are additional decisions left untried, these
are all marked NULL. This signals to Repair-SHOP
that the decisions were not evaluated but that they
might be revisited in the future.

Repair-SHOP’s operation is straightforward. When
Repair-SHOP monitors a change in conditions, it
propagates the result to the highest affected goal. It then
checks to see if an alternate decision (one previously
marked NULL) is available from that goal. If no alternate
decision is available, GoalGraph navigates up the tree,
returning the first available alternate decision from the
nearest goal node. If an alternate decision is eventually
found, replanning is potentially possible. The pseudo-code
of this process, called adjustGoalGraph, is shown below.

Repair-SHOP then obtains the stored SHOP state from the
chosen alternate decision. It then restores the saved SHOP
state and restarts SHOP’s planning algorithm. The effect is
the same as if SHOP had been planning along this path
from the beginning. If the plan is not successful, Repair-
SHOP searches for a new alternate decision. If it is
successful, the returned plan is saved as a new subplan.
This new subplan is then spliced into the original plan
beginning with the first affected goal node.

adjustGoalGraph(G, S, GG)
// Input: G is a goal; S is the current state; GG is the

goal graph;
// Output: GG is updated with a valid alternative for G,

if any exists

 0. O � currentOperator(G,GG)
 1. if invalidOperator(G,D,S) then label(O, OUT)
 2 else return GG
 3. if a valid operator, OG of G with state S exists then
 4. select (G, OG, GG)
 5. label(OG, IN)
 6. return GG
 7. else
 8. label(G, OUT)
 9. P � parent(G, GG)
 10. return adjustGoalGraph (P, S, GG)

The adjustGoalGraph algorithm operates as follows. First,
the operator achieving the goal G is obtained (Step 0).
When the operator is invalid (e.g., if the goal is a
compound task, and its method is not applicable in S), the
operator O for G will be labeled as invalid (Step 1).

Figure 2: Goal graph after repair

Otherwise the algorithm terminates (Step 2). If a valid
alternative operator OG exists, OG is labeled as valid, and
GG is updated to record the modifications (Steps 3-6). If
there are no alternative goals available, which means G
cannot be repaired (Step 7), then a recursive call is made
with the parent goal of the current goal to propagate the
effect of T’s loss of validity (Steps 9-10).

In summary, adjustGoalGraph propagates the result of
the change towards the root via the goal graph. We close
this section by making two notes about the Repair-SHOP
procedure:

1. Repair-SHOP must notify all nodes of any change
in assignment synchronously. This is necessary
because certain plans may require the same
condition in more than one place, and all instances
of the same condition must remain consistent. The
synchronous updates are done by looping through
the list of identical assignment nodes stored in a
specialized data structure.

2. Even though there are multiple valid decisions, they
may be marked NULL. This reflects the fact that
typically the planner stops considering alternatives
once one is found to be successful. During
adaptation, adjustGoalGraph must therefore
examine the validity of alternative decisions should
the one currently selected fail.

Example

We now discuss a sample run of the Repair-SHOP system
incorporating both the goal graph and SHOP. The plan
under consideration is a shipping problem where the
computer must determine a way to move a package from
City A to City B using an HTN version of the logistics
transportation domain (Veloso, 1994). A typical problem
in this domain is to place the objects at different locations,
starting from a configuration of objects, locations, and
transportation means. There are different sorts of locations
and means of transportation. The means of transportation
have certain operational restrictions. For example, a truck
can only be moved between two places located within the
same city.

The goal graph shown in Figure 1 shows two alternative
decisions for the task (achieve-goal (obj-at package1
location4)). These decisions are decomposing the task into:
(1) (!fly-airplane plane2 airport3) (achieve-goal (obj-at
package1 location4)), and (2) (!fly-airplane plane1
airport3) (achieve-goal (obj-at package1 location4)).
location4 is in the same city as airport3 (not shown in
Figure 1). Therefore, these two alternatives relocate the
plane containing package1 in airport3, from where
package1 can be relocated to location4. The first decision
is selected in the goal graph (labeled IN).
 Now suppose that this goal graph is stored in a case and
that a new problem is given whose task is the same as the
one in the case and whose initial state is almost identical –
with the one exception that plane2 is not available. Repair-
SHOP will reconstruct the goal graph relative to the new

problem, thereby sparing the need for SHOP to search for
an HTN. When it reaches the first decision of the task
(achieve-goal (obj-at package1 location4)), it notes that

this decision is not valid. As a result, adjustGoalGraph is
called, with the goal graph goal corresponding to this task.
adjustGoalGraph finds that the second decision is valid
and labels it accordingly. The resulting goal graph is
shown in Figure 2.

Empirical Evaluation

We conducted experiments to measure (1) the overhead
added to the first-principles planning process by
constructing the goal graph, (2) any gains in problem-
solving performance of adapting the plans, and (3) the
percentage of steps in original HTN retained. The domain
was the logistics transportation domain.

In order to evaluate Repair-SHOP’s performance as
compared to SHOP, we ran a series of experiments to test
its execution time and ability to handle plan adaptation on
different problem spaces. We obtained a series of 20
problems Pi using a custom-designed random problem
generator and solved them using SHOP, while
automatically constructing the goal graph. A collection of
20 new problems Pi’ were generated by taking each
problem Pi, randomly choosing a condition, and removing
it from the initial state. We measured the time required by
SHOP to solve each Pi’, the time required by SHOP to
solve P’ while generating the goal graph, the time required
to replan by Repair-SHOP to solve each Pi’ by adapting the
goal graph generated for Pi, and the number of steps
retained. Since time measurements change between runs,
we report the average over 5 runs. The tests were
performed on a 2.5 GHz Pentium 4 computer running
Windows XP and executing code within JBuilder. Figure

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19

SHOP

RepairSHOP

SHOP+GG

Retained

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 3 5 7 9 11 13 15 17 19

Retained

Figure 3: Empirical results

3 summarizes the results. The top figure compares the
running times and the bottom figure indicates the
percentage of steps retained after adaptation.

Several facts can be observed from this figure. First, we
confirmed that constructing the goal graph causes an
overhead to the plan generation process. As a result
SHOP+GG generally takes longer than SHOP to generate
plans. This was not unexpected, given the additional
overhead required. Second, we observed that in most
problems the time to replan by Repair-SHOP is smaller
than SHOP. The only exceptions were problems in which
no steps were retained. Noteworthy is Problem # 13 in
which no steps were retained. However, on average the
improvement RepairSHOP took 63.7% of the time it took
SHOP to solve the same problems (10.7 seconds versus
16.9 seconds). An average of 27.2% of the steps from the
original plan where retained in the final solution. Although
admittedly, the problems in Pi where very similar to the
ones in Pi, the results however show the potential for
speed-up in problem solving by adapting HTNs.

Related Work

This work is heavily inspired by work on plan adaptation
that takes into account the path leading to a solution and
failure traces (Veloso, 1994). During problem-solving, a
first-principles planner may explore branches of the search
space that resulted in failures. These failures together with
the path that led to a solution are stored in the case. Such
information was first implemented for a state-space
planner (Veloso, 1994), and later implemented for partial-
order planners (Muñoz-Avila & Weberskirch, 1996). Plan
adaptation of hierarchical plans has been proposed before
(Kambhampati & Hendler, 1992; Muñoz-Avila et al.,
2001). Whereas these works use the path that led to the
solution, the distinguished characteristic of RepairSHOP is
that it takes into account failure traces as well.

RepairSHOP can be used to perform plan repair. In plan
repair an existing plan must be modified because of
changes in the world conditions (van der Krogt et al.,
2005). In fact, our experiments illustrate plan repair
capabilities as well as plan adaptation because the tasks are
the same and what changes is the initial state. The
RETSINA system (Paolucci et al, 1999) repairs
hierarchical plans in the context of a multi-agent system.
However, it does not takes into account failed traces.

We have not discussed the topic of similarity and in
particular its impact on adaptation for the sake of focus.
The strong relation between the retrieval and adaptation
effort is well known (Veloso, 1994).

Final Remarks

Repair-SHOP, the result of the integration of the goal
graph system and SHOP, is a powerful tool that allows
plan adaptation and plan repair, facilitating using SHOP in
dynamic environments. Although creating the goal graph
requires a certain amount of overhead, the costs are greatly

outweighed by the benefits of the plan adaptation and
replanning capabilities. While Repair-SHOP is now a
complete system, there are still areas in which it could be
upgraded or improved. Currently, only replanning from
invalidated assignments has been implemented. Therefore,
the system can only consider situations when conditions in
the case are missing. Clearly, it would be desirable to
consider situations where new conditions are added (e.g.,
additional resources are made available).

One possible application of our system could be to allow
computer-controlled units to react to changes in the
environment in a sensible way. Hierarchical planning in
this area has already been explored (Hoang et al., 2005).
Many games include decision trees for research,
manufacturing, or combat where one objective must be
completed for another to be possible.

References

Cox, M. T., Muñoz-Avila, H., & Bergmann, R. Case-

based planning. Knowledge Engineering Review. 20(3):

283-287. 2006.

Doyle, J. Truth Maintenance System. Artificial

Intelligence, 12, 1979.

Hoang, H., Lee-Urban, S., and Muñoz-Avila, H.

Hierarchical Plan Representations for Encoding Strategic

Game AI. Proceedings of AIIDE-05. AAAI Press.

Kambhampati, S. & Hendler, J. A Validation Structure-

Based Theory of Plan Modification and Reuse. Artificial

Intelligence Journal. Vol 55. 1992.

Mitchell, S.W. A hybrid architecture for real-time

mixed-initiative planning and control. Proceedings of the

IAAI-97. AAAI Press, 1997.

Muñoz-Avila, H., Aha, D.W., Nau D. S., Breslow, L.A.,

Weber, R., & Yamal, F. SiN: Integrating Case-based

Reasoning with Task Decomposition. In Proceedings of

IJCAI-2001. AAAI Press, 2001.

Muñoz-Avila & Weberskirch, Planning for

manufacturing workpieces by storing, indexing and

replaying planning decisions. In Proceedings of AIPS-96.

AAAI-Press, 1996.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Muñoz-

Avila, H., Murdock, J. W., Wu, D., and Yaman, F.

Applications of SHOP and SHOP2. IEEE Intelligent

Systems 20(2). 2005.

Paolucci, M.; Kalp, D.; Pannu, A. S.; Shehory, O.; and

Sycara, K. A planning component for RETSINA agents. In

Intelligent Agents VI. Springer. 1999.

Petrie, C. Planning and Replanning with Reason

Maintenance. PhD thesis, University of Texas at Austin,

Computer Science Dept. 1991.

van der Krogt, R.P.J. and de Weerdt, M.M.. Plan Repair

as an Extension of Planning. In Proceedings of ICAPS-05.

2005.

Veloso, M. Planning and learning by analogical

reasoning. Springer-Verlag, 1994.

