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We describe HTN-MAKER, an algorithm for learning hierarchical planning knowledge in the form of task-
reduction methods for hierarchical task networks (HTNs). HTN-MAKER takes as input a set of planning states
from a classical planning domain and plans that are applicable to those states, as well as a set of semantically
annotated tasks to be accomplished. The algorithm analyzes this semantic information to determine which portion
of the input plans accomplishes a particular task and constructs task-reduction methods based on those analyses.

We present theoretical results showing that HTN-MAKER is sound and complete. Our experiments in five
well-known planning domains confirm the theoretical results and demonstrate convergence toward a set of HTN
methods that can be used to solve any problem expressible as a classical planning problem in that domain, relative
to a set of goal types for which tasks have been defined. In three of the five domains, HTN planning with the learned
methods scales much better than a modern classical planner.
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1. INTRODUCTION

Automated planning systems typically require that a domain expert provide back-
ground planning knowledge about the dynamics of the planning domain. At a minimum, the
background knowledge includes semantic descriptions (i.e., preconditions and effects) of
possible actions, as in classical planning. More recent planning paradigms allow or require
additional knowledge about the structural properties of the domain and about the potential
problem-solving strategies for planning problems in the domain.

Over the years, hierarchical task networks (HTNs) emerged to be one of the best-
known approaches for modeling structural and problem-solving knowledge about a planning
domain. An HTN planner formulates a plan via task-reduction methods (also known as
simply methods), which describe how to reduce complex tasks into simpler subtasks until
tasks that correspond to actions that can be performed directly in the world are reached.
The HTN planner SHOP (Nau et al. 1999, 2003) demonstrated impressive gains in runtime
performance over earlier classical planners. HTNs provide a natural knowledge-modeling
framework in many real-world applications, including military planning (Mitchell 1997;
Muñoz-Avila et al. 1999), strategy formulation in computer games (Smith, Nau, and Erol
1998; Hoang, Lee-Urban, and Muñoz-Avila 2005), manufacturing processes (Nau et al.
1999), and storytelling (Cavazza and Charles 2005).

Hierarchical task network domain descriptions have other uses as well, such as project
planning. Project planning is an endeavor to create products or to deliver services (Project
Management Institute 2013) and is used in a wide variety of activities including organizing
public events, planning software engineering projects, and civil construction management.
At its core, project planning involves the creation of hierarchical structures called work
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breakdown structures (WBS). WBSs are equivalent to HTNs (Muñoz-Avila et al. 2002), and
HTN planning techniques can be used for project management (Xu and Muñoz-Avila 2004).

Despite the great success of HTNs as a knowledge-modeling formalism, typically, a
significant knowledge engineering burden is required to write HTN domain descriptions of
planning domains. To alleviate this burden, there have been several advances in automated
learning of hierarchical knowledge for planning (Reddy and Tadepalli 1997; Khardon 1999;
Choi and Langley 2005; Ilghami et al. 2005; Xu and Muñoz-Avila 2005; Könik and Laird
2006; Nejati et al. 2006; Nejati, Könik, and Kuter 2009; Könik, Nejati, and Kuter 2009).
Most of these works require as input some structural knowledge about the world and the
relationships among the activities to be accomplished to achieve the objectives. For example,
the ICARUS family of learners (Choi and Langley 2005; Nejati et al. 2006) use a hierar-
chy of concepts, which are Horn clauses that describe the relationships between goals and
subgoals. The learner uses these concept definitions to chain together subgoals when creat-
ing nonprimitive skills that describe how to achieve goals. Another class of systems take as
input goal annotations over possible task decompositions and use case-based reasoning (Xu
and Muñoz-Avila 2005), version-space learning (Ilghami et al. 2005), or inductive learning
(Könik and Laird 2006) to produce the structure of HTN methods and their preconditions.

Currently, project plans are developed manually with the assistance of commercial tools
such as Microsoft Project. However, the main difficulty is that task models for project
planning are not available. Most knowledge is episodic (i.e., WBSs generated for previous
projects). Our work aims at learning domain knowledge to generate HTNs from examples,
and thus could be used to learn WBSs as well. As a result, our work could make pro-
ducing such WBSs more efficient and thus be able to reduce costs for a large number of
organizations that today perform this process manually.

In this article, we describe HTN-MAKER,1 an off-line and incremental algorithm for
learning HTN methods without requiring background knowledge about the hierarchical
relationships among tasks and goals or problem-solving strategies. Even though such knowl-
edge is not provided, HTN-MAKER is capable of learning both the structural relationships
between tasks and their subtasks and the conditions under which a task-reduction method
may be applied to a task. In particular, our contributions in this article are as follows:

� We describe a way to adopt the notion of task models from the process-models literature
(Murdock 2001) in a new formalism. This formalism intuitively associates an activity
with the conditions that must hold in the world such that it is possible to begin that activ-
ity and the effects that must be realized when the activity ends. HTN-MAKER uses this
formalism to learn the relationships among tasks, which leads to learning the structure
of the HTN methods.

� We describe a formalism in which goal regression (Waldinger 1977; Mitchell, Keller,
and Kedar-Cabelli 1986) may be applied hierarchically over actions and task-reduction
methods and an algorithm, HTN-MAKER, that uses this hierarchical goal regression to
learn the applicability conditions of HTN methods and to identify their subtasks.

� We demonstrate an equivalence between classical planning problems and (some) HTN
planning problems and present a theoretical study showing that if an HTN planner using
methods learned by the HTN-MAKER generates a plan for an HTN planning problem
with an equivalent classical planning problem, then that plan is a solution to the equiva-
lent classical planning problem. We also show that given a set of semantically annotated
tasks for a domain and sufficient example traces from which to learn, HTN-MAKER is

1 HTN-MAKER is short for Hierarchical Task Networks with Minimal Additional Knowledge Engineering Required.
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capable of learning a set of HTN methods such that an HTN planner using those methods
will be able to solve every problem expressible using those tasks.

� We present an extensive experimental evaluation of the HTN-MAKER in five benchmark
planning domains from past International Planning Competitions over several thousand
planning problems. The hierarchical goal regression technique used by HTN-MAKER
is able to generalize well from specific training plan traces to general methods that are
effective in planning. A reimplementation of SHOP using the learned HTNs was able
to solve our experimental problems much faster Wah than FASTFORWARD (Hoffmann
and Nebel 2001) and SGPLAN6 (Hsu and Wah 2008) for large problems in three of five
planning domains and is competitive in all but one.

2. BACKGROUND

2.1. Classical Planning

We adopt the usual definitions for classical planning as in Ghallab, Nau, and Traverso
(2004, Chapter 11). We summarize these definitions in the following.

We formalize a classical planning domain description as a tuple † D .S; A; �/. S
and A are the finite sets of all possible states and actions in the domain, respectively. A
state is a conjunction of ground atomic formulas in predicate logic. An action has the form
a D .ah; a� ; a�; aC/, where the head of the action ah is a grounded predicate and the
preconditions a� , negative effects a�, and positive effects aC of the action are conjunctions
of atomic formulas that use only terms from the head of the action. When convenient, we
will describe states and the preconditions and effects of actions in a set-theoretic notation
rather than a logical notation (i.e., a state is a set of ground atomic formulas). For example,
Figures 1 and 2 contain descriptions of a state and action, respectively, from the BLOCKS-
WORLD domain.2

A large number of actions are typically represented compactly by an operator, which
has the same form as an action but is not required to be grounded. A variable substitution‚
creates an instance of an action from an operator by fully grounding it.

In †, � is the state-transition function: a partial function S � A ! S . That is, given
a state s 2 S and an action a 2 A, if s ˆ a� , then �.s; a/ D .s n a�/ [ aC. Otherwise,
�.s; a/ is undefined. If �.s; a/ is defined, then we say that the action a is applicable in the
state s; otherwise, a is not applicable in s.

A plan � D ha1; a2; : : : ; aki is a sequence of actions. A plan � D ha1; a2; : : : ; aki
is applicable to a state s if �.s; a1/ is defined, �.�.s; a1/; a2/ is defined, and each subse-
quent transition through �.�.: : : ; �.s; a1/; a2/; : : : ; ak/ is defined. As a shorthand, we write
�.s; �/ for the state produced through this chain of transitions.

A classical planning problem is a triple P D .†; s0; g/, where † D .S; A; �/ is a clas-
sical planning domain, s0 2 S is the initial state, and g is a conjunction of ground atomic
formulas known as the goals of the problem. A solution for the classical planning problem
P is a plan � D ha1; a2; : : : ; aki such that � is applicable to s0 and the final state �.s; �/
satisfies the goals g. A classical planning problem is solvable if it has a solution. We call the
sequence of states produced by successively applying the actions in the plan starting from
s0 as the state trajectory ES� induced by the solution plan � . That is, if � D ha0; a1; : : : ; ani

2 Figure 2 uses the syntax of the well-known Planning Domain Definition Language (PDDL) (McDermott 1998), which
is also used with extensions for all other examples in this article. In the PDDL language, negative effects are represented
simply as negations of atomic formulas.
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FIGURE 1. An example state from the BLOCKS-WORLD domain.

FIGURE 2. An example action from the BLOCKS-WORLD domain.

is applicable to state s0, it produces state trajectory ES� D hs0; s1; : : : ; snC1i, where
sk D �.s0; ha0; a1; : : : ; ak�1i/ for all 0 < k � nC 1.

2.2. Hierarchical Task Network Planning

In HTN planning, a task t is a symbolic representation of an activity in the world,
usually represented as a logical predicate (Ghallab et al. 2004, Chapter 11). Formally, it is
an expression of the form .name arg1 arg2 � � � argk/ where name is a symbol denoting
the name of the task. Each argi for i D 1 : : : k is either a variable or a constant symbol,
denoting an argument of the task.

Let T be the finite set of tasks to be performed in a classical planning domain † D
.S; A; �/. T includes the head of every action in A, called the primitive tasks, as well as
some additional tasks called nonprimitive tasks. A task network w is a sequence (i.e., a
totally ordered list) of tasks. The empty task network is w D hi.

The form of HTN planning in which task networks are totally ordered is known as
simple task networks (STNs) (Ghallab et al. 2004, Chapter 11) and is used by planners
such as SHOP (Nau et al. 1999). Other forms of HTN planning allow partially ordered or
unordered task networks but are beyond the scope of this article. Following the lead of other
authors, we will use the familiar, general term HTN even though we are writing specifically
about STNs.

An HTN planner formulates a plan via task-reduction methods (in short, methods),
which describe how to reduce complex tasks into simpler subtasks until tasks that corre-
spond to actions that can be performed directly in the world are reached. Formally, a method
is a triple m D .mh; m� ; mw/, where the head mh is a nonprimitive task in T , the precon-
dition m� is a conjunction of atomic formulas, and the subtask mw is a task network into
which the head task may be reduced. A method m D .mh; m� ; mw/ is applicable to a task
network w D ht0; t1; : : : tni in a state s, if there exists a variable substitution ‚ such that
‚.mh/ D t0 and s ˆ ‚.m�/.

As an example, Figure 3 shows a definition in an extended PDDL syntax of two methods
that might be useful in the BLOCKS-WORLD domain. (In this language, the head of a method
is divided into two parts: the name Make-2Pile and the parameters ?a and ?b. The
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FIGURE 3. Two example methods from the BLOCKS-WORLD domain.

language also allows us to specify a free variable ?c that will be used in the parameters
and/or subtasks, which makes it easier to parse the language and find potential errors.)
Throughout this article, we follow the convention that the names of primitive tasks begin
with an exclamation point and that the names of logical variables begin with a question
mark. The first method shown in Figure 3 is applicable only in states where a block ?a is
clear and on a block ?c, a block ?b is clear, block ?b is on the table, and the gripper is
empty. Figure 1 shows one state in which this method is applicable, with the substitution
{?a/A, ?b/B, ?c/C}.

One can define similar methods for the cases where ?a is on the table, or ?a is not
clear, or ?b is not clear or is on another block, or the gripper is not empty, or ?a is being
held, and so on. The method on the left is insufficient to solve a problem by itself; because
it is recursive, an additional method is needed to reduce its second subtask, such as the one
on the right.

A plan � D ha0; a2; : : : ; aki accomplishes a task network w D ht0; t1; : : : ; tni in state
s if any of the following cases can be shown to hold:

(Case 0:) If both the plan � and the task network w are of length 0
(Case 1:) If the first task t0 is primitive and is an exact match for the head of the first action

in the plan, a0, such that the action a0 is applicable to state s, and if the successor
task network w0 D ht1; : : : ; tni is accomplished by � 0 D ha1; a2; : : : ; aki in the
successor state s0 D �.s; a0/

(Case 2:) If the first task t0 is nonprimitive and there exists a method m D .mh; m� ; mw/

and a substitution ‚ such that t0 D ‚.mh/ and s ˆ ‚.m�/, such that the plan �
accomplishes the reduced task network w0 D ‚.mw/ � ht1; t2; : : : ; tni in state s

The replacement of a nonprimitive task t by the subtasks of a method m is known as
a reduction of the task t with m. A sequence of one or more reductions that results in
a task network with no nonprimitive tasks is a decomposition of the task. The recursive
structure containing the intermediate steps in the decomposition of a task is a decomposition
hierarchy or decomposition tree (or decomposition forest if the initial task network contains
more than one task). Each node in a decomposition forest represents a task, while each edge
represents a reduction of a nonprimitive task into subtasks. The roots of a decomposition
forest represent the initial task network. The leaves of a decomposition forest represent
primitive tasks, which form a plan when read from left to right.

In Figure 4, (Make-2Pile A B) is reduced into h(!Unstack A C);
(Make-2Pile A B)i, using method m1 (Figure 3, left). Within that task network,
(Make-2Pile A B) is further reduced into h(!Stack A B)i using method m0
(Figure 3, right). These two reductions together create a decomposition of the top-level
(Make-2Pile A B) into the task network h(!Unstack A C); (!Stack A B)i,



8 COMPUTATIONAL INTELLIGENCE

FIGURE 4. An example decomposition tree in the BLOCKS-WORLD domain.

which is also a plan. The decomposition tree itself contains only the nodes for the four
tasks and the edges that are shown as dashed arrows; the states below are shown to aid in
understanding.

An HTN planning domain description is a tuple †H D .S; A; T;M; �/, where S , A,
and � are the finite sets of states and actions and the state-transition function as in a classical
planning domain description, T is a finite set of tasks including the heads of the actions in
A, and M is a finite set of methods whose heads are members of T .

An HTN planning problem is a tuple PH D .†H ; s0; w0/, where †H is an HTN plan-
ning domain description, s0 is the initial state, and w0 is the initial task network (whose
elements are members of T ). A solution for the HTN planning problem PH is a plan � that
accomplishes the initial task network w0 in the initial state s0. We say that an HTN planning
problem is solvable if there is a solution plan for it.

Algorithm 1 contains a high-level description of an HTN planner that searches for a
solution plan using the three cases defined earlier. Both SHOP and our reimplementation
HTN-SOLVER are based on this procedure.

2.3. Annotated Tasks

As described earlier, a task t in HTN planning is a symbolic representation of an activity.
Consequently, t does not specify any information about the meaning of that activity: what
purpose the activity serves, under what conditions it can start, or under what conditions it
ends. Existing HTN formalisms that associate semantics to tasks (Tate 1977; Erol, Hendler,
and Nau 1996; Nau et al. 2003) typically do so through the methods that reduce those tasks.
Because we seek to learn the methods themselves, our formalism requires that tasks have
inherent semantics.

Several previous works have described similar formalisms; examples include activity
representation in software engineering (Sutton, Heimbigner, and Osterweil 1995), user inter-
actions for artificial intelligence planning systems (Fernández-Olivares et al. 2006), adaptive
agent systems (Ulam et al. 2005), hierarchical planning and plan adaptation (Kambhampati
and Hendler 1992; Biundo and Schattenberg 2001), and introspective, self-reasoning agents
(Murdock 2001). In our work, we have adopted the formalism of the task-method-knowledge
language TMKL (Murdock 2001). In TMKL, tasks indicate what they accomplish by stating
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FIGURE 5. An example annotated task in the BLOCKS-WORLD domain.

their conditions and effects: if the conditions are true in a state of the world from which the
task is accomplished, then the effects must be true in the resulting world state.

Formally, we define an annotated task as a tuple � D .�h; �� ; �C/, where the head �h is
a nonprimitive task, the precondition �� is a conjunction of atomic formulas, and the post-
condition �C is a conjunction of atomic formulas. The preconditions of an annotated task
represent those facts that must hold in order for it to be possible to attempt that task, while
the postconditions represent those facts that must become true as a result of accomplishing
that task. Given a sequence of actions hap; apC1; : : : ; aq�1; aqi and a corresponding state
trajectory hsp�1; sp; : : : ; sq�1; sqi, an annotated task � is accomplished by the action trace
if its preconditions �� are satisfied in the state sp�1 and its postconditions �C are satisfied
in the state sq . There are no negative postconditions of an annotated task, because there are
no negative goals of a classical planning problem.

Figure 5 shows a definition of an annotated task from the BLOCKS-WORLD domain.
This task can be attempted from a state in which the preconditions (none) are satisfied
and has been accomplished in a state in which the postconditions are satisfied. Note that
a method reducing this task may have additional applicability conditions that specify the
conditions under which the task is to be accomplished with the subtasks specified in the
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method. However, those applicability conditions are not necessarily part of the semantics of
the task; they are specific to the particular way of accomplishing the task with that method
and may differ from one possible method for the task to another. Similarly, each particular
method for accomplishing this task is likely to also produce side effects in addition to the
required postconditions. Because there are no preconditions, this particular task may be
attempted from any state, such as the state of Figure 1 with substitution {?a/A, ?b/B},
or {?a/B, ?b/C}, and so on. Figure 3 shows two of the many possible methods for
accomplishing the task.

The notion of an annotated task enables us to define an equivalence between a task
and a set of goals, and consequently, between a classical planning problem and an HTN
planning problem. Given a goal statement g, we define the equivalent annotated task as
�g D .�

h;;; g/, where �h is an arbitrary nonprimitive task that uniquely represents g. Then,
given a classical planning problem P D .†; s0; g/ and annotated task �g D .�h;;; g/

equivalent to its goals, we define PH D .†H ; s0; h�
hi/ to be an equivalent HTN planning

problem. The sets of states and actions and the state transition function of the HTN planning
domain description †H are the same as those of †. The set of tasks in †H contains each
of the primitive tasks and �h (and may also contain other tasks). Given a classical planning
problem P there might be multiple different equivalent HTN planning problems PH , each
with different sets of tasks and methods. Many of those equivalent HTN planning prob-
lems may be unsolvable. (Consider, as a trivial example, one in which the set of methods
is empty.)

Because the motivation for our work is to automate the creation of HTN methods
with very little manual knowledge engineering, our experiments thus far have used very
simple annotated tasks that have no preconditions and whose postconditions correspond
directly to problem goals. See Appendix D for the details of these annotated tasks used
in our experiments. Our formalism allows the use of more complex annotated tasks (e.g.,
with a carefully chosen set of harmonious postconditions or with a non-empty precondi-
tion set), and it remains as future work to explore whether additional human effort would
improve results.

By introducing annotated tasks, we have not changed the semantics of HTN planning,
because the annotations are not used by the HTN planners explicitly. Instead, they are
implicit in that the annotated tasks will be used by HTN-MAKER to learn methods, which
are then given to the HTN planners to generate plans in the usual way. The learned meth-
ods are constructed in such a manner that plans generated will be guaranteed to satisfy the
conditions of the annotated tasks.

3. LEARNING HTNs FROM SOLUTION PLANS FOR SEMANTICALLY
ANNOTATED TASKS

In this section, we describe HTN-MAKER, a novel off-line incremental learning algo-
rithm that learns a set M of HTN methods from an input set of planning states and plans
applicable to them and successively updates M with new methods it learns when presented
with new plans from the same planning domain.

The idea behind the algorithm is that plans provide demonstrations of how an annotated
task might be accomplished. Moreover, in some cases, they may show not simply an accept-
able way to accomplish a task, but what the creator of the plan considers to be the best way
to do so. However, accomplishing a certain task does not need to have been the objective of
a plan in order for HTN-MAKER to learn to do so from that plan; plans may coincidentally
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accomplish tasks, and HTN-MAKER will still extract knowledge from them. Thus, HTN-
MAKER performs explanation-based learning (Minton et al. 1989): using logical inference
to explain how an example (a plan) is an instance of a high-level concept (accomplishment
of a task).

In order to learn from a plan, it is necessary to determine which part of a plan (perhaps
the entire plan, but perhaps not) accomplishes a particular task. Our main algorithm, HTN-
MAKER, does this by evaluating the preconditions and postconditions of an annotated task
in the different states that result from execution of a plan. Section 3.2 explains this algorithm
in detail.

Once it has been determined that a (sub)plan accomplishes a task, the next step is to
determine how the task was accomplished and to create a method structure that encapsulates
the strategy and that can be used by an HTN planner to use that strategy for accomplishing
the task in other situations. This means creating an ordered list of subtasks that represent
the activities taken to accomplish the task and a set of preconditions that must be true in
order for this to be an appropriate strategy for accomplishing the task. A subalgorithm,
LEARN-METHOD, uses a novel generalization of goal regression known as hierarchical goal
regression to find an appropriate subtask list and precondition set and creates a method
based on them. Section 3.3 explains this algorithm in detail.

If the subtasks of the methods learned by HTN-MAKER were always primitive tasks
corresponding directly to actions in the plan, we would simply be learning macro-operators,
which other researchers have already done (Mooney 1988; Botea et al. 2005). Instead, some
subtasks should be nonprimitive tasks that must be further reduced, creating the hierarchical
structures typical of HTN planning. To accomplish this, HTN-MAKER examines subplans
in a particular order and maintains information about nonprimitive tasks that had been
accomplished by sub-subplans, so that those nonprimitive tasks may be used as subtasks of
methods that will be learned later.

3.1. Example

Before we explain the details of the algorithm, we will show an example of its execution
in the familiar BLOCKS-WORLD domain. Figure 6 shows an initial state s0 (the same one
from Figure 1), a plan of four actions a0 through a3 applied to that state, and the rest of the
resulting state trajectory. Suppose that there exist annotated tasks for building piles of sizes
1 through 3, where the blocks in a pile are listed from top to bottom, the top block is clear,
and the bottom block is on the table. The annotated tasks for size-1 piles and size-3 piles
would be analogous to the annotated task for size-2 piles, which was shown in Figure 5.

HTN-MAKER would begin by considering the subplan containing only action a0. It
would check whether or not there is an annotated task whose preconditions are satis-
fied in s0 and whose postconditions are satisfied in s1 but not in s0 and would find one:

FIGURE 6. An example plan in the BLOCKS-WORLD domain.
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(Make-1Pile C). Thus, the LEARN-METHOD subroutine would learn a method (labeled
m0 on Figure 7) to explain how that task was accomplished. Method m0 has only one sub-
task, a0. It has several preconditions, (on-table C), (on A C), (clear A), and
(hand-empty), which were found by regressing the postconditions of the annotated task
through a0.

Next, HTN-MAKER would look at the subplan containing only a1. This short sub-
plan accomplished a different task: (Make-2Pile A B). Thus, another method (m1 in
Figure 8) would be learned in a similar fashion. This happens to be the second one shown
in Figure 3. Then HTN-MAKER would consider the subplan containing both a0 and a1. It
would find that this larger subplan accomplishes the task (Make-2Pile A B) as well
and would thus learn another method m2. This method has two subtasks: first, a0 and then
the nonprimitive task (Make-2Pile A B), which happens to be the same task as the
head of the method. Recursive structures like this are not uncommon in the methods learned
by HTN-MAKER and represent the fact that after part of the work has been done by the
first subtask, there is a new state in which the system may already know how to accomplish
the larger task. The preconditions of m2 will be the postconditions of (Make-2Pile A
B) regressed first through method m1 and then through action a0. Method m2 happens to
be the first one shown in Figure 3. Note that there are now two methods for accomplishing
(Make-2Pile A B), which are applicable in different circumstances and which can be
used together or independently.

FIGURE 7. A method that could be learned from the example plan.

FIGURE 8. Two additional methods that could be learned from the example plan.
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FIGURE 9. Four additional methods that could be learned from the example plan.

HTN-MAKER next considers the subplan ha2i but finds nothing interesting is accom-
plished by that subplan and finds the same thing to be true of subplans ha1; a2i and
ha0; a1; a2i. The subplan containing only a3, however, accomplishes (Make-3Pile C A
B). HTN-MAKER thus learns a new method (m3 in Figure 9. It then considers ever larger
subplans and finds that each one accomplishes this task, and thus learns methods m4, m5,
and m6 as well, using the same sort of logic. Thus, from this single five-action plan, HTN-
MAKER learns one way to create a pile of one block, two ways to create a pile of two blocks,
and four ways to create a pile of three blocks.

The HTN-MAKER algorithm contains a nondeterministic choice that determines what
subtasks to give a method when there are several possibilities. This example shows what
would happen if that nondeterministic choice were made in one particular way, which cor-
responds to the choices made in our experiments. (See Section 5.1 for details.) If that
nondeterministic choice were made in a different way, a different set of methods would have
been learned from this example, creating a different hierarchical structure. For example,
it might instead have learned to create the pile C–A–B by first creating the pile A–B, then
picking up C, and finally stacking C on A.

For the sake of simplicity, this example and the algorithms shown in Sections 3.2 and 3.3
show the creation of methods whose terms are constants. The methods that HTN-MAKER
learns actually use variables, and Section 3.4 explains how the example and algorithms are
extended to accomplish this.

3.2. The Main Algorithm

A learning example e D .s0; �/ is a pair such that s0 is a state and � is a plan applicable
to that state. The input to HTN-MAKER includes a classical planning domain †, a finite set
of learning examplesE, a finite set of annotated tasks T , and a set of existing HTN methods
M for the tasks annotated in T . In a typical run of HTN-MAKER M , would be the empty
set, but it can also contain some methods that had been previously learned or handcrafted.
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The HTN-MAKER algorithm uses a data structure that we call an indexed method
instance. An indexed method instance is a sextuple x D .xh; xC; xw ; x� ; xb; xe/ in which
xh is the head of an annotated task � for which a method has been learned, xC is the post-
conditions of that annotated task, xw is a task network into which xh may be reduced, x�

is a set of preconditions under which that reduction is valid, and xb and xe are indices in
a state trajectory. This indicates that the subtasks are a demonstration of how the annotated
task was accomplished within the subplan between states xb and xe. Thus, x� must hold
in sxb and xC must hold in sxe . Indexed method instances are computed automatically by
HTN-MAKER from the annotated tasks and learning examples.

Algorithm 2 shows a high-level description of HTN-MAKER. Before processing each
of the learning examples, HTN-MAKER calls two subroutines to create methods that do not
require a demonstration from which to learn. The MAKE-TRIVIAL-METHODS subroutine
creates (if they do not already exist) a trivial method for each annotated task, which can be
used to “accomplish” a task that can accomplished without doing anything at all because its
postconditions are already true. Specifically, if � D .�h; �� ; �C/ is an annotated task, the
trivial method for � is m D .�h; �� [ �C; hi/. These methods are needed so that an HTN
planner will be able to produce the empty plan when the empty plan is a valid solution to a
(sub)problem.

The MAKE-VERIFICATION-METHODS subroutine creates (if they do not already exist)
a verification method for each annotated task. If � D .�h; �� ; �C/ is an annotated task,
the verification method for � is m D .t 0; �C; hi/. Verification methods and trivial methods
are very similar, but there is an important difference: the head of a verification task is not
the head of the annotated task. Instead, it is a new task symbol t 0 created uniquely for that
annotated task, known as a verification task. Verification tasks do not have annotations, and
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no methods will be learned to reduce them. Instead, the single verification method for an
annotated task may be used to reduce the associated verification task into the empty task
network when the annotated task has been accomplished. The last subtask in every method
that we learn will be a verification task, to ensure that the postconditions of the task really
were accomplished. To simplify presentation, this last subtask of each learned method is
omitted from the figures in this article. The necessity of verification tasks and methods is
explained in Section 4.1 and Appendix C.

HTN-MAKER then processes each learning example in turn. In line 6, HTN-MAKER
initializes an empty set X of indexed method instances. In lines 7 through 9, it generates
the state trajectory ES� induced by the plan in the current learning example. HTN-MAKER
then considers each subsequence of states, si through sf , from the state trajectory (lines
10 and 11). Note that these subsequences are processed in a specific order such that
when any subsequence is being considered, all of its subsequences have already been pro-
cessed in earlier iterations. This ensures that HTN-MAKER learns new HTN methods in
a bottom-up fashion, effectively building a possible HTN decomposition hierarchy above
the plan.

In line 12, HTN-MAKER considers each annotated task for each possible subsequence
of the state trajectory. If the first state, si , and the last state, sf , of the subsequence satisfy
the preconditions and postconditions of the annotated task, respectively, then that task has
been accomplished by the plan that corresponds to this state subsequence (line 13). We skip
over situations in which the postconditions of an annotated task were satisfied in both si and
sf because in these cases, the subsequence does not actually demonstrate accomplishment
of the task. When a task has been accomplished, HTN-MAKER calls its LEARN-METHOD
subroutine to learn a new method that describes how the task was accomplished (line 14).
The LEARN-METHOD subroutine is shown in Algorithm 3 and will be explained in the
subsequent section. HTN-MAKER adds the new method that LEARN-METHOD returns to
the list of methods (line 15).

In line 16, HTN-MAKER stores information about the method that has just been learned
in an indexed method instance. This will be used in successive calls to the LEARN-METHOD
subroutine to allow complex hierarchies to be learned.

3.3. Hierarchical Goal Regression

We now describe our hierarchical goal regression technique, which is the basis of our
learning procedure for both the structure (i.e., task–subtask relationships) in an HTN method
and its preconditions. Unlike previous work on goal regression (Mitchell et al. 1986), hier-
archical goal regression can regress goals both horizontally (through the primitive actions)
and vertically (up the task hierarchy through indexed instances of previously learned HTN
methods).

In hierarchical goal regression, a formula can be regressed over either a primitive action
or an indexed method instance for a nonprimitive task. In the case of the former, the regres-
sion is performed using the preconditions and effects of the action in the same manner
as traditional goal regression. In the case of the latter, the regression is performed over
the postconditions of the annotated task and the preconditions of the method learned for
that task.

The idea of goal regression is that we can find some set of atoms g0 such that, if we
reach a state s0 in which they hold, we know a procedure to transform s0 into a state s in
which our goals g hold. In classical goal regression, the procedure would be a plan, but in
our case, it is a task network. Given a set of goals g and a task network w, we can find the
set g0 D R.g; w/ with the regression operator R (Reiter 1991), modified to support tasks.
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The value of R.g; w/ is the minimal set of atoms that must be true in a state s0 to guarantee
that w will be decomposable, resulting in a plan that produces a state s where g holds:

� If w is the empty task network, then R.g; w/ D g.
� If w contains a single primitive task t , which corresponds to the action
a D .t; a� ; a�; aC/, then R.g; w/ D .g n aC/ [ a� .

� If w contains a single nonprimitive task t for which we have an indexed method
instantiation x D .t; xC; xw ; x� ; xb; xe/, then R.g; w/ D .g n xC/ [ x� .

� If w contains two or more tasks ht0; t1; : : : ; tni, then R.g; w/ D
R.R.g; htni/; ht0; t1; : : : ; tn�1i/.

Note that a particular indexed method instantiation may have incidental side effects that
serendipitously achieve a goal. These side effects are not used in regression because there is
no guarantee that they would occur in other situations (in which a task that could be reduced
with the same method observed in the example is instead reduced with a different, equally
legal method that has different side effects).

Algorithm 3 shows a high-level description of our hierarchical goal regression pro-
cedure, called LEARN-METHOD. Intuitively, the algorithm works backward through a
given subplan, maintaining a set of open conditions (initially the postconditions of the
annotated task �). At each step, it nondeterministically chooses between the actions and/
or indexed method instances whose effects provide an open condition, regresses the
open conditions through that action or indexed method instance to create a new set of
open conditions, and prepends the chosen action or indexed method instance to a list of
subtasks for the new method being learned. When it reaches the beginning of the sub-
plan, the algorithm creates a new method whose preconditions are the remaining open
conditions and whose subtasks are those actions and indexed method instances that
were chosen.

In line 3, LEARN-METHOD first initializes the set of open conditions to the postcon-
ditions of the annotated task. The open condition set represents those conditions that an
indexed method instance or action could cause to become true to assist in accomplishing the
task. LEARN-METHOD also initializes a task network that will represent the subtasks of the
method to be learned in line 4 and a current state in line 5. The single element of the task
network is the verification task t 0 associated with the annotated task � .

The main loop of LEARN-METHOD iterates the current state backward through the
relevant section of the state trajectory, sometimes by steps (line 20) and others by leaps
(line 18). The loop begins by initializing an empty set of potential subtasks (line 7).
An indexed instance x of a previously learned method is a potential subtask if it meets
three criteria: the ending index of the instance must be the current state, the beginning
index of the instance must be no earlier than the initial state of this subplan, and the post-
conditions of the instance must contain an open condition (lines 9 and 10). The action
directly before the current state is a potential subtask if its positive effects contain an
open condition (lines 12 and 13). It cannot strictly form an indexed method instance, but
storing information about it in the same data structure simplifies the presentation of
the algorithm.

If there are any potential subtasks, one is nondeterministically selected (line 15). The
subtask selected will determine the structure of the HTNs generated by the learned meth-
ods. Section 5.1 discusses the details of the criterion used to make this selection. The open
conditions are regressed through the selected indexed method instance in line 16, the head
of the subtask is prepended to the subtask HTN in line 17, and the current state is moved
backward to before this subtask began in line 18.
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If there are no potential subtasks (i.e., the previous action was not useful to accom-
plishing the task), then that action is skipped, and the current state moved back by one
(line 20).

At the end of the main loop, the LEARN-METHOD subroutine returns a new method
with the same head as the annotated task that was accomplished (line 21). The preconditions
of this new method include the preconditions of the annotated task and the regressed open
conditions, and its subtasks are the actions and the heads of the indexed method instances
through which they were regressed.

3.4. Generalization of the Learned Methods

The actions in a plan � of a learning example are entirely grounded. On the other
hand, the terms in an HTN method are generally variables, and a substitution is applied to
ground the method when it is used to reduce a task. We now explain how we generalize
each grounded method into a method containing variables.3 We will explore two different
ways to perform generalization. In Section 5, we report how these two versions compare in
a variety of domains.

3 We use the term “generalization” as it is frequently used (e.g., Bergmann and Wilke 1995). This term describes the
process of replacing constants with variables in an object.
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At nearly every step of the LEARN-METHOD algorithm, a substitution must be main-
tained to keep track of the relationships between terms from different subtasks. When a
new subtask is added (lines 16 and 17 of Algorithm 3), the variables used in the action or
indexed method instance that is being added are standardized apart from any variables cur-
rently used in the method being built. We consider two possible techniques for determining
when a variable used in the new subtask should be unified with a variable that is already in
use for the method being built.

3.4.1. Weak Generalizations. In this formalism, variables from the new subtask are
only unified with variables already in use if they appear in a positive effect of the new sub-
task that matches an open condition. For example, if (on ?a ?b) is in the open condition
set with substitution {?a/B12, ?b/B3} and (on ?x ?y) is a positive effect of the
subtask being added with substitution {?x/B12, ?y/B3}, then ?a will be unified with
?x, and ?b will be unified with ?y. Otherwise, variables are not unified, and an HTN plan-
ner using the method will be free to instantiate it with a substitution that maps each of them
to the same constant or to different constants. For example, if ?c, ?d, and ?e are other vari-
ables currently in use for the new method with substitution {?c/B5, ?d/B7, ?e/B1}
and ?z is another variable used by the new subtask with substitution {?z/B7}, then ?d
will not be unified with ?z (unless ?z is part of a positive effect of the subtask that matches
an open condition that ?b is a part of, as described earlier).

3.4.2. Strong Generalizations. In strong generalizations, every constant used in the
subtasks of a method is mapped to a single variable in that method, and in planning, no
two variables may refer to the same constant. For example, if ?a, ?b, ?c, ?d, and ?e
are variables currently in use for the new method with substitution {?a/B12, ?b/B3,
?c/B5, ?d/B7, ?e/B1} and ?x, ?y, and ?z are variables used in the new subtask
with substitution {?x/B12, ?y/B3, ?z/B7}, then ?awill be unified with ?x, ?bwill
be unified with ?y, and ?d will be unified with ?z. This reduces the applicability of the
learned method but may in so doing prevent the method from being used in unhelpful ways.

The difference between weak and strong generalizations is demonstrated in the two
similar methods of Figure 10. These methods are from the LOGISTICS domain, where trucks
and airplanes are used to deliver packages to various locations among several cities. The
first uses weak generalization, while the second uses strong generalization. Both deliver a
package to a location first by driving a truck to where the package is and then recursively

FIGURE 10. Two example methods that could be learned in the LOGISTICS domain.
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trying to deliver (presumably by loading it into the truck, driving the truck to the destination,
and unloading it there). The subtle difference is that the first drives the truck from a location
?z, which has no constraints other than that it be a location and that the truck be located
there, while the second drives the truck from a location ?y, which is also used in the head
of the method. Thus, the second method will only be applicable when the truck happens to
start in the package’s desired destination, while the first will work regardless of where the
truck begins.

3.4.3. Method Subsumption. Once the set M of learned methods are generalized to
include variable symbols, it might be the case that a generalized method m 2 M subsumes
another method m0 2 M . Intuitively, this means that in every case where m0 is applicable,
m will also be applicable and have exactly the same results.

We say that a methodm1 subsumes another methodm2 when there is a substitution that
could be applied to one such that they will have identical heads and subtasks and the precon-
ditions of m2 will imply the preconditions of m1. Formally, method m1 D .mh1; m

�
1 ; m

w
1 /

subsumes method m2 D .mh2; m
�
2 ; m

w
2 / if there exists a substitution ‚ such that each of the

following are true:

(1) mh2 D ‚.m
h
1/.

(2) mw2 D ‚.m
w
1 /.

(3) m�2 ˆ ‚.m
�
1 /.

If a method is subsumed by another, then we can safely remove it from the domain
description without reducing the number of problems that may be solved using the
domain description. Reducing the number of methods in a domain description is desirable
because a planner should be more efficient with fewer constructs to consider. However,
determining whether or not condition 3 holds requires solving an instance of the associative–
commutative unification problem, which has been shown to be NP-complete (Kapur and
Narendran 1986).

4. THEORETICAL PROPERTIES

In this section, we present the formal properties of the HTN-MAKER learning algorithm.

4.1. Soundness

The soundness of the HTN-SOLVER procedure follows directly from the definition of
a solution to an HTN planning problem and has been discussed elsewhere (Ghallab et al.
2004). That is, if HTN-SOLVER produces a plan as a solution for an HTN planning problem,
then that plan is indeed a solution to that HTN planning problem. What we attempt to show
is that our procedure for learning planning knowledge from traces and annotated tasks is
sound, which is to say that plans produced by HTN-SOLVER using methods learned by HTN-
MAKER will be solutions to the classical planning problems that are the equivalent of the
HTN planning problems being solved by HTN-SOLVER.

Our main soundness result depends on the verification tasks and methods introduced in
Sections 3.2 and 3.3. Each learned method has as its last subtask a verification task, which
may only be decomposed (into the empty task network) when the postconditions of the
associated annotated task hold.
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Theorem 1. Let † D .S; A; �/ be a classical planning domain, E be a finite set of learning
examples for that domain, and T be a finite set of annotated tasks for that domain. LetM be
the result of HTN-MAKER.†;E; T ;;/ with verification tasks enabled. Let P D .†; s0; g/
be a classical planning problem and PH D .†H ; s00; w0/ be an equivalent HTN planning
problem with †H D .S 0; A0; T;M; � 0/. Let � be a plan produced by HTN-SOLVER as a
solution to PH .

Then, � is a solution to P .

For a proof of this theorem and of helpful lemmas, see Appendix A. For a discussion of
soundness without the use of verification tasks and methods, see Appendix C.

4.2. Completeness

We now establish the completeness of the HTN-MAKER algorithm. We say that a setM
of HTN methods is complete relative to a set of annotated tasks T for a classical planning
domain description † if, for any classical planning problem P from the domain described
in † that is solvable and whose goals have an equivalent annotated task in T , the HTN-
equivalent problem PH is solvable using M .

As before, we present the theorem here and its proof in Appendix A.

Theorem 2. Let † be a classical planning domain description and T be a finite set of
annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that the
set of methods M generated by HTN-MAKER.†;E; T ;;/ can be used to solve the HTN
equivalent to every problem expressible using † and T .

We found a specific type of planning problems that can be expressed and solved using
the methods learned by HTN-MAKER, which cannot be expressed in classical planning.
This type of problems is called classically partitionable and intuitively is problems where
specific subproblems must be solved in a certain order (e.g., a problem requiring a vehicle
to go from location A to B and then going back to A). For details, please see Appendix B.

5. EXPERIMENTAL EVALUATION

There are two main questions that we would like to answer regarding HTN-MAKER:
how many examples are required for HTN-MAKER to learn a sufficient set of methods
for a domain and how useful are the learned methods for planning? To answer these two
questions, we performed two different types of experiments within five planning domains:

� Rate of convergence. To measure this, we generated training and testing problems in
each domain and solutions to the testing problems. Then we measured the percentage of
testing problems that could be solved by an HTN planner using the methods learned from
the first training example, the first two training examples, and so forth. If the methods
learned from only a few examples are sufficient to solve most of the testing problems,
we say that the set of methods rapidly converges to one that is complete.

� Planning speed. To measure this, we generated new sets of training problems of varying
sizes in each domain and attempted to solve them using the methods learned in the first
set of experiments, comparing with several other planners. If the HTN planner using the
learned methods is able to solve problems more quickly than classical planners, we say
that the methods are of high quality.
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The domains used in our experiments are LOGISTICS, BLOCKS-WORLD, SATELLITE,
ROVERS, and ZENO-TRAVEL, each of which was introduced in one of the past international
planning competitions. To be useful for our experiments, a domain needed to have a clas-
sical representation that still produced interesting problems. For details about the domains,
including the annotated tasks used in the experiments, see Appendix D.

5.1. Implementation Details

The nondeterministic choice in line 15 of Algorithm 13 allows a great deal of flexibility
in the algorithm. This choice determines how subtasks are grouped to form methods. Each
of the three decomposition trees shown in Figure 11 could be learned by HTN-MAKER
depending on this choice. For the implementation tested in this evaluation, we caused the
algorithm to make specific, deliberate choices. Each time the algorithm reaches line 15, if
there exists one or more indexed instances x 2 X 0 of methods learned in previous iterations,
then we consider only those as possible subtasks. (That is, the underlying action is not
considered as a possible subtask.) When X 0 contains multiple indexed instances of methods
learned in previous iterations, the instance that extends over the largest subplan is selected
(i.e., the instance with the smallest beginning index xb). If there are multiple such indexed
method instances, one is chosen arbitrarily, and there is no backtracking to consider others.
This decision resulted in deep hierarchies (such as the third tree in Figure 11) rather than
shallow ones (such as the first tree in Figure 11) and maximized the potential for methods
learned from different examples to be used together.

We also required the first subtask of every method to be a primitive action. The reason
for this decision is that a reduction directly to a nonprimitive task does not change the state

FIGURE 11. Three possible decomposition trees that could be learned by HTN-MAKER.
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and thus does not change the set of applicable methods. Thus, poorly designed left-recursive
methods could potentially cause an HTN planner to enter a cycle in which it continues the
same series of reductions to an infinite depth.

A much earlier version of our implementation instead explored every possible outcome
of each nondeterministic choice in the algorithm, learning very many ways to express the
same problem-solving strategy in different hierarchies. This created a sort of information
overload when problem solvers used the learned knowledge and did not capture any use-
ful knowledge that is not also captured with the carefully chosen nondeterministic choices
described earlier.

5.2. Coverage Experiments

We tested the convergence rate of the set of methods learned by HTN-MAKER in four
different configurations to determine the effectiveness of subsumption checking and the two
different models of generalization. These configurations are shown in Table 1.

For each domain, we generated 400 random problems of low complexity. For each of
five trials, 300 of these problems were randomly selected as a training set and the remaining
100 as a test set. The training and test problems had between one and eight packages to be
delivered in the LOGISTICS domain,x between 5 and 10 blocks to reorganize in the LOGIS-
TICS domain, between one and five images to collect in the SATELLITE domain, between
three and six waypoints in the ROVERS domain, and between three and eight passengers to
transport in the ZENO-TRAVEL domain. Each trial also specified a random ordering over
the problems in the training set. Running multiple trials mitigated any bias that might occur
from most complex problems being placed in the testing set or being among the first training
examples processed.

We first generated a solution to each of the training problems using the FASTFORWARD
(Hoffmann and Nebel 2001) planner. For each training problem, the initial state of the prob-
lem and the generated solution formed a learning example. The initial run of HTN-MAKER
used as input the classical planning domain, a set containing the learning example for the
first training problem, the annotated tasks, and an empty set of methods. The second run
used as input the classical planning domain, a set containing the learning example for the
second training problem, the annotated tasks, and the set of methods produced in the initial
run. For each successive training problem, we reran HTN-MAKER, using the set of meth-
ods learned from all previous training problems as input. After each run of HTN-MAKER,
we recorded the number of test problems that could be solved by HTN-SOLVER (our reim-
plementation of SHOP) within 30 min using the methods learned thus far. (It is possible but
unlikely that some problems could have been solved given more time.)

This experiment was repeated for each of the four configurations of HTN-MAKER. The
partitioning of problems into training and test sets and the order of the training set for a
given trial number are constant between experiments.

TABLE 1. Configurations of HTN-MAKER.

Configuration Subsumption Generalization

WEAKS Yes Weak
STRONGS Yes Strong
WEAKNS No Weak
STRONGNS No Strong
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FIGURE 12. Coverage in the LOGISTICS domain.

FIGURE 13. Coverage in the BLOCKS-WORLD domain.

The results in the LOGISTICS domain, averaged across the five trials, are shown in
Figure 12. Configurations WEAKS and WEAKNS (those with weak generalization) learn
more quickly, but all four configurations solve more than 90% of test problems after learning
from 50 training problems. The presence or absence of subsumption has only an extremely
small effect.

Figure 13 shows similar data for the BLOCKS-WORLD domain. There are no significant
differences among the four configurations. As in the LOGISTICS domain, coverage reaches
90% before 50 training problems, but there is a much longer tail.

Figure 14 contains the same information for the SATELLITE domain. Configuration
WEAKS, with subsumption and weak generalization, performs relatively poorly in this
domain, while the other three learn very quickly. In fact, under configuration WEAKS, the
coverage of the domain decreases slightly when it encounters a specific problem, in viola-
tion to our Lemma 4. What happens here is that while the new set of methods can still be
theoretically used to solve all of the problems that it could solve in the past, our planner is
no longer able to do so within a reasonable time limit. Because of the weak generalization
and subsumption used in configuration WEAKS, HTN-MAKER replaces one of the existing
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FIGURE 14. Coverage in the SATELLITE domain.

FIGURE 15. Coverage in the ROVERS domain.

methods with a more general version. This generalized method becomes applicable in ways
that move toward one solution to the problem, but because the base case for that solution
has not been found, it then moves to a second potential solution where the same conditions
are true. Rather than moving on to the solution that can be completed, the planner continues
working toward those that cannot. Given enough training examples, even in configuration
WEAKS, we would learn this base case to reach a complete domain.

The ROVERS domain (Figure 15) is the most difficult for HTN-MAKER to learn. Con-
figurations WEAKS and WEAKNS still learn reasonably rapidly, passing 80% coverage
before 50 training examples, but strong generalization drastically decreases the learning
rate. Unlike the other domains in which we tested HTN-MAKER, ROVERS requires some
pathfinding: maneuverability between locations forms a directed graph that is strongly con-
nected but not complete. Thus, a plan to achieve a goal may reference quite a few locations:
the one in which the rover is initially located, the one from which a sample needs to be taken,
all of those in the path found between these two, the location from which the rover can com-
municate with the lander, all of those in the path found between the sample location and the



LEARNING HTN MODELS FROM INPUT TRACES 25

FIGURE 16. Coverage in the ZENO-TRAVEL domain.

TABLE 2. Number of Methods Learned.

Domain WEAKS STRONGS WEAKNS STRONGNS

LOGISTICS 42.2 105.6 230.0 829.4
BLOCKS-WORLD 146.0 176.7 1000.6 1056.4
SATELLITE 19.6 24.8 65.8 71.4
ROVERS 152.2 419.8 763.6 1957.4
ZENO-TRAVEL 11.0 16.2 4211.6 4371.0

communication location, and the location of the lander itself. Requiring that these locations
be the same as (or different from) each other only as is strictly necessary to guarantee suc-
cess in using the methods (weak generalization) produces methods that can be used to solve
far more problems than requiring that the relationships among these locations be exactly the
same as in the plan from which the methods were learned (strong generalization).

In ZENO-TRAVEL (Figure 16), the system is rapidly able to learn a complete domain
regardless of configuration.

We also recorded the total number of methods learned from the 300 training prob-
lems, averaged over the five trials. This information is shown in Table 2. As expected,
we find that both subsumption and weak generalization decrease the number of methods
learned. In general, using subsumption has a more significant impact than the generalization
scheme selected.

Finally, we recorded the average time required to learn from a single plan with each
of the four configurations of HTN-MAKER, which is shown in Table 3. HTN-MAKER was
much faster in configurations WEAKS and WEAKNS, in which weak generalization was
used. Surprisingly, although subsumption adds an additional step to the algorithm that is
in the worst case NP-complete, it does not significantly affect the average runtime in the
LOGISTICS, BLOCKS-WORLD, or ROVERS domain. Our optimized subsumption algorithm
can be much faster than its worst-case complexity in the right conditions, and perhaps what-
ever time was expended searching for methods that subsume one another was offset by
having a smaller method file to read and parse for each run.
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TABLE 3. Average Number of Seconds to Learn from One Trace.

Domain WEAKS STRONGS WEAKNS STRONGNS

LOGISTICS 3.2 13.3 3.3 13.4
BLOCKS-WORLD 6.8 15.2 6.4 10.9
SATELLITE 1.66 0.262 0.262 0.225
ROVERS 23.7 116.0 21.7 116.0
ZENO-TRAVEL 0.06 0.07 1.61 1.57

TABLE 4. Success Rates for Each Planning Domain and Planning System (as Percentages).

Planner LOGISTICS BLOCKS SATELLITE ROVERS ZENO

FASTFORWARD 95.6 94.0 51.2 100.0 94.8
SGPLAN6 100.0 99.0 100.0 100.0 100.0
HTN-SOLVER (HANDHTN) 100.0 100.0 100.0 100.0 100.0
HTN-SOLVER (WEAKS) 93.6 99.0 100.0 99.8 99.2
HTN-SOLVER (STRONGS) 92.8 97.0 98.3 92.6 100.0
HTN-SOLVER (WEAKNS) 89.2 99.0 100.0 99.8 100.0
HTN-SOLVER (STRONGNS) 88.1 94.0 98.3 92.4 100.0

5.3. Planning Speed Experiments

We also performed a second set of experiments, in which we measured the suitability
of the learned methods for quickly solving new problems. In each domain, we generated
20 random classical planning problems of each of several problem sizes, with their HTN
equivalents. We then compared the time taken to solve these problems by seven competi-
tors: FASTFORWARD (Hoffmann and Nebel 2001) with the classical version of the domain,
SGPLAN6 (Hsu and Wah 2008) with the classical version of the domain,4 HTN-SOLVER
(the SHOP algorithm rewritten and optimized in C++; Nau et al. 1999) with a handcrafted
HTN version of the domain, and HTN-SOLVER with an HTN version of the domain using
the methods learned in the first trial (chosen arbitrarily) of the experiments described in
Section 5.2 for each configuration of HTN-MAKER.

Each planning system was given 1 h of CPU time to attempt to solve each problem.
Not every competitor was able to solve every problem. In most cases, this was because
the planner was still working at the end of the time limit. HTN-SOLVER with the learned
methods also failed to solve some problems because its methods did not contain sufficient
domain knowledge.5 The percentage of problems solved by each system, for each domain,
is shown in Table 4.

Figure 17 shows the average time to solve a problem of each size in the LOGIS-
TICS domain. Note that the vertical axis on this and all other figures in this subsection is

4 FASTFORWARD was selected as a “distinguished planner” in the second International Planning Competition in 2000
and remains a common benchmark, while an earlier version of SGPLAN6 won the first prize in the satisficing, deterministic
planning track of the fifth International Planning Competition in 2006.

5 Later, when presenting data about the average time to solve a problem in each of these systems, we will use only those
problems that were solvable by every configuration and show only those difficulty levels where there are at least 10 such
problems.
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FIGURE 17. Average problem-solving times in the LOGISTICS domain.

FIGURE 18. Average problem-solving times in the BLOCKS-WORLD domain.

logarithmically scaled. The primary result visible in Figure 17 is that FASTFORWARD scales
very poorly, performing admirably on small problems but taking about 10 times as long
as the worst of other competitors at 300 packages. SGPLAN6 is better but still lags behind
all configurations of HTN-SOLVER. Unsurprisingly, HTN-SOLVER works better with the
handcrafted methods than with those learned by HTN-MAKER. Except for two large out-
liers, HTN-SOLVER takes about twice as long to solve problems with the learned methods
than it does with the handcrafted methods, regardless of the configuration of HTN-MAKER.
Among the learned method sets, configuration WEAKS is best and STRONGNS worst, but
the differences are slight.

Figure 18 shows the solution times for each configuration in the BLOCKS-WORLD
domain. In this domain, FASTFORWARD performs even worse, requiring more than 100
times as long to solve large problems as any other competitor. SGPLAN6 also scales poorly
compared with HTN-SOLVER, and again, HTN-SOLVER performs better with the hand-
crafted methods than the learned ones. This time, there are significant differences between
the times for HTN-SOLVER using methods learned from the different configurations of
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HTN-MAKER. These curves are nearly flat (except for a large outlier in STRONGNS), which
indicates that at these problem sizes, the performance of HTN-SOLVER is dominated by
overhead. It is clear that WEAKS has the least overhead and STRONGNS the most, as would
be expected from the number of methods in Table 2.

Figure 19 shows the data for the SATELLITE domain. In this domain, FASTFORWARD
performs so poorly that we were not able to collect data on it above a problem size of
150. As in the previous two domains, SGPLAN6 performs very well on small problems but
appears to scale poorly compared with the HTN approaches. HTN-SOLVER performs best
with the handcrafted methods, takes about twice as long with the methods learned from
configurations WEAKS and WEAKNS, and about twice as much again for configurations
STRONGS and STRONGNS.

Figure 20 shows that FASTFORWARD is surprisingly fast in the ROVERS domain, beating
even the handcrafted HTN methods. However, HTN-SOLVER with the handcrafted methods
does appear to be scaling better, such that with larger problems, it would likely outperform
FASTFORWARD as it already outperforms SGPLAN6. HTN-SOLVER with any learned meth-
ods performs very poorly. We suspect that this is because the HTN versions of the domain

FIGURE 19. Average problem-solving times in the SATELLITE domain.

FIGURE 20. Average problem-solving times in the ROVERS domain.
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FIGURE 21. Average problem-solving times in the ZENO-TRAVEL domain.

solve a single goal at a time, while the classical planners may consider all of the goals
simultaneously and order actions to minimize the necessity of repetition. Among the learned
method sets, configuration WEAKS is best and STRONGNS is worst.

Figure 21 shows the problem-solving times in the ZENO-TRAVEL domain, where FAST-
FORWARD is again quite poor. As before, HTN-SOLVER with the handcrafted domain
performs best. SGPLAN6 and HTN-SOLVER with the methods learned in configuration
STRONGS are a bit slower, HTN-SOLVER with the methods learned in configurations
WEAKNS and STRONGNS are significantly slower, and HTN-SOLVER with the methods
learned in configuration WEAKS is slower still.

5.4. Discussion

While it often does not learn a full domain description from the 100 learning examples,
HTN-MAKER does learn very quickly to solve most problems in a given domain. Solutions
for problems in the five domains in which we tested are highly structured, and the HTN-
MAKER algorithm is able to exploit this structure and generalize from examples to many
other problems on which it was not trained. As expected, FASTFORWARD is not competitive
with more recent planners in four of five domains. The knowledge learned by HTN-MAKER
can be exploited by HTN-SOLVER to solve large problems more quickly than even a modern
classical planner in three of five domains. The learned HTN methods are not of the same
quality as handcrafted ones, but they are surprisingly close.

The various configurations of HTN-MAKER make a significant difference. Subsump-
tion can decrease the number of methods learned by a factor of four or more without
requiring substantially more time during the learning process and usually provides a
small but noticeable improvement in problem-solving speed. Using weak generalization
makes HTN-MAKER run more quickly and generate a more compact set of methods and
requires fewer training examples. Differences in planning times are slight but also favor
weak generalization.

6. RELATED WORK

Structural modeling has led to a number of representations and formalisms, including
frames (Minsky 1975), abstraction techniques (Amarel 1968), goal graphs (Blum and Furst
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1997), teleoreactive logic programs (Choi and Langley 2005), and HTNs (Tate 1977; Currie
and Tate 1986; Wilkins 1988; Erol et al. 1996). All of these formalisms have in com-
mon the use of certain kinds of constructs (e.g., objects, goals, activities, tasks, and skills)
that represent knowledge of varying degrees of complexity and that are connected through
structural relations.

6.1. Learning HTNs

Previous work on learning HTNs can be classified according to the following
dimensions:

� Task–subtask relations. This dimension refers to whether the learning algorithm
assumes that the possible task reductions for each task are given or if they are learned by
system.

� Preconditions. This dimension refers to whether the preconditions for each task
reduction are given or if they are learned by the system.

� Complete state information. This refers to whether each action in the input traces is
annotated with the state that was valid before or after the action. Equivalently, this also
includes systems where only the initial state is given but a complete definition of the
actions is given, in which case these actions can be used to produce all intermediate
states.

� Task expressivity. This indicates whether the tasks must correspond directly to single
planning goals or may have richer semantics.

� Incremental. This indicates if the learning system requires a complete set of traces to
be able to solve problems or whether it can start solving problems when only a few input
traces are given and incrementally solve more problems as more input traces are given.
This is a generally desired property as otherwise the system will need to wait until a
sufficiently large number of traces is given as input before it can learn a domain to start
solving problems.

� Classically partitionable. This refers to whether the learned knowledge can be used to
solve classically partitionable problems, as described in Appendix B. Being able to solve
classically partitionable problems is a desirable property also related to the richness of
the expressivity of HTNs.

Table 5 compares several HTN learning systems according to these dimensions. The
first row is HTN-MAKER, which as explained throughout this article learns the task–subtask
relations and the preconditions of the methods. HTN-MAKER requires that a complete initial
state and complete action definitions are included in the input. It can learn general tasks
accomplishing single or multiple goals at the same time, and it is incremental as the methods
that are learned from the point that it receives the first input trace can be used to solve
problems. Finally, the domains it learns can be used by an HTN planner such as SHOP to
solve classically partitionable problems.

In the second row is CAMEL (Ilghami et al. 2005). CAMEL assumes that the HTN
task reductions are given and that the intermediate states after each action are given in the
input trace as well. CAMEL first identifies the literals that change from state to state and
propagates these upward through the given HTN trees. These propagated literals are used as
candidates for each task reduction in the HTN. CAMEL then uses the candidate elimination
algorithm to learn the best preconditions that cover all literals for each reduction. For this
purpose, it also assumes that it receives as input labeled incorrect literals for a reduction,
which serve as negative examples. Because it relies on the candidate elimination algorithm,
it is not incremental. Also, because the task–subtask relationships are provided, it can learn
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preconditions for methods of any type of tasks, and the methods that it produces can be used
by an HTN planner such as SHOP to solve classically partitionable problems.

The third system is DINCAT (Xu and Muñoz-Avila 2005). Like CAMEL, it assumes
that the task–subtask relationships are given. It also assumes that HTN reductions are anno-
tated with applicability conditions, although they do not need to be complete, and that a
taxonomy of the types of objects in the domain is given. It then uses inductive generaliza-
tion techniques to learn the preconditions of methods based on (1) the provided annotations
and (2) generalizations of the arguments in these literals based on the taxonomy. It is incre-
mental. Because the HTNs are given, it can learn to solve tasks achieving multiple goals,
and when given to SHOP, its output can solve classically partitionable problems.

The ICARUS cognitive architecture (Langley and Choi 2006) uses a variant of HTNs
called teleoreactive logic programs. Unlike other systems discussed so far, it does not
assume that input traces are given. Instead, it maintains two knowledge bases. The first is
called concepts and consists of Horn clauses that indicate relationships between goals and
subgoals. The second is called skills and consists of both constructs similar to actions and
constructs similar to methods. When solving a new problem, if ICARUS finds a gap in its
library of skills such that it does not know how to proceed from a state it reached to achieve
a goal, it uses first-principle planning techniques to fill these gaps. The resulting plan is
examined based on the concept and skill hierarchies to explain these gaps and learn new
skills that can be used in the future. As a result, it is incremental. It requires complete
state information. In its current form, its tasks are single goals although extensions have
been proposed.

The LIGHT system (Nejati et al. 2006; Li et al. 2009) uses similar procedures to learn
teleoreactive logic programs from observing an expert. LIGHT formalizes the notion of
goal-indexed HTNs as a particular special case of HTN formalism that depends on the teleo-
reactive logic programs. Our indexed method instances, on the other hand, are derived from
task-reduction methods in HTN planning.

The skills learned by ICARUS, LIGHT, and other variants cannot be used to solve class-
ically partitionable planning problems because the skills must achieve a classical goal and
need the classical goal statement in their input because of the use of means-ends analysis.
One way to enable ICARUS to learn HTN methods for a classically partitionable planning
problem is to refactor the problem into a series of classical problems and give each problem
as input to ICARUS. However, this would require a supervisor system that would do the
translation, run ICARUS on the subproblems, and combine the results. HTN-MAKER, on the
other hand, can learn from any initial state and sequence of actions, without requiring that
they accomplish a particular goal statement.

X-LEARN (Reddy and Tadepalli 1997) receives planning traces as input and uses induc-
tive generalization to learn d-rules, which, similar to the skills of ICARUS, indicate how
to reduce a goal into actions and/or other subgoals. X-LEARN has been conceived in the
context of bootstrap learning where it assumes that the initial input traces solve simple
goals and then more complex traces are given to solve more complex goals. X-LEARN is
designed to exploit this by reducing complex goals into subgoals it has already learned to
solve. It is incremental and it can solve single goals. It cannot learn how to solve classically
partitionable problems.

Like CAMEL, LEARN-HTN (Zhuo et al. 2009) receives as input the traces and the HTN
decompositions used to generate them. However, unlike CAMEL, it does not assume that
the complete intermediate states are given, and hence, it is designed to learn HTN precon-
ditions when there is limited observability about the state of the world and possibly under
noisy conditions. LEARN-HTN is based on the action-model learner ARMS but generalizes
the latter to produce HTN preconditions in addition to action models. We discuss ARMS in
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the subsequent paragraphs. LEARN-HTN works in three steps: it first builds constraints from
given observed decomposition trees to build action models and method preconditions. Sec-
ond, it then solves these constraints using a weighted MAX-SAT solver. Third, the weighted
MAX-SAT solution is then converted to obtain action models and method preconditions.
Because the HTNs are given, it can learn to solve any tasks and when given to SHOP, its
output can solve classically partitionable problems. However, it is not incremental because it
usually requires a large number of input traces before a good set of preconditions is learned.

L-HTN (Yang, Pan, and Pan 2007) assumes that a decomposition hierarchy is partially
given: it knows the tasks at each level, but it does not know how they are reduced into the
next level (i.e., which tasks at level n are the parent tasks of which tasks at level n C 1).
It assumes that the tasks at each level are not interleaved (i.e., every nonprimitive task at
level n will be reduced into a sequence of contiguous tasks at level nC1) and that complete
state information is given. It models this learning problem as a Markov decision process.
Because the HTNs are partially given, it can learn to achieve any task and solve classically
partitionable problems. It is not incremental because it requires enough examples before the
Markov decision process converges to a policy.

The work of Biundo and Schattenberg (2001) does not involve learning but uses struc-
tures equivalent to our annotated tasks. In their work, these annotations are used during the
planning process so that task-reduction planning can be combined with state-based classical
planning to fill in gaps where appropriate methods do not exist.

In our work, we assume that task annotations are provided by a human and that meth-
ods should be learned. Marthi, Russell, and Wolfe (2008), by contrast, assume that methods
(called immediate refinements in their terminology) are given but that task annotations are
not. They demonstrate that several sets of task postconditions may be automatically com-
puted, such as the set of atoms that are guaranteed to become true no matter what refinements
are applied or the set of atoms that could possibly become true depending on which refine-
ments are applied. Thus, they provide a way to unify the semantics of SHOP-like systems
(determined entirely by the available methods) with those we are using (determined entirely
by preconditions and postconditions).

6.2. Other Works on Learning Structural Knowledge

Research on learning HTNs is also related to learning macro-operators, learning action
models, and learning abstraction. We now discuss these.

Work on learning macro-operators (Mooney 1988; Botea et al. 2005) is designed to
speed up classical planning, as is work on learning search control knowledge (Etzioni 1993;
Minton 1998; Fern, Yoon, and Givan 2004). The aim of search control knowledge algorithms
is to learn knowledge constructs that when reused allows the planner to reach its goals more
rapidly. For example, macro-operators indicate sequences of two or more actions to be per-
formed when the conditions indicated by the macro-operator are met in the current state.
Hence, search control knowledge does not increase the number of problems that theoreti-
cally can be solved. However, from a practical stand point, these systems increase the num-
ber of problems that can be solved within a reasonable amount of time. Because the learned
constructs are part of the classical planning paradigm, they cannot represent classically
partitionable problems.

Fikes, Hart, and Nilsson (1972) store plans as triangle tables, which annotate the reasons
that actions were chosen and the relationship between them—essentially the same infor-
mation computed during goal regression. Triangle tables are then generalized and used to
monitor plan execution for correctable failures or surprises. Both entire generalized triangle
tables and subtables may be reused as macro-operators in subsequent planning sessions.
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Other researchers assumed that hierarchies are given as inputs for learning task mod-
els. Garland, Ryall, and Rich (2001) use interactive elicitation in which the user provides
examples showing how to correctly perform a task and annotates other ways to perform the
task in the examples. Tecuci et al. (1999) learn task models where the user interacts with the
system providing demonstration and refinement of the models.

Inductive approaches have been proposed for learning action models for classical plan-
ning (Martin and Geffner 2000; McCluskey, Richardson, and Simpson 2002; Winner and
Veloso 2003). For example, the DISTILL system learns domain-specific planners from an
input of plans that have certain annotations (Winner and Veloso 2003). The input includes
the initial state and a complete action model. DISTILL elicits a programming construct for
plan generation representing the action model and search control strategies.

Walsh and Littman (2008) present an algorithm to learn operator schemas by observing
an agent executing actions, some of which succeed and some of which may fail for unknown
reasons, and using a teacher who provides correct plans when the agent makes a mistake.
They demonstrate that the number of mistakes made by their algorithm is polynomial in the
number of predicates that can be used for preconditions and effects of operators and in the
number of actions.

Yang, Wu, and Jiang (2007) propose an algorithm called ARMS for learning action
models from input plan traces whose intermediate states are partially observable. ARMS
uses a series of weighted constraints encoded by the user and extracted from the input traces.
For example, one of the constraints says that if a literal occurs in the state before an action
but not in the state after the action, then it is likely that literal is a negative effect of the
action (another plausible explanation is that the literal occurred in the state after the action
but was not observed). Traces are parsed, and all such constraints are extracted and passed
to a weighted MAX-SAT constraint satisfier, which results in truth values for atoms having
a high degree of support. These constraints are then used to encode a best-guess model of
the preconditions, negative effects, and positive effects of each of the actions.

Another related work is case-based planning (CBP), in which existing plans are stored
as cases and then reused for domain or search control knowledge. Systems that use cases
to represent domain knowledge, such as the CHEF system (Hammond 1986) or the Bio-
Planner (Jin, Decker, and Schmidt 2009), can be very efficient as the adaptation procedures
are specialized for the domain. Their main drawback is that they require the encoding
of a new adaptation procedure for every new domain, and hence, the adaptation process
lacks clear semantics. Systems that use cases as search control knowledge, such as in the
PRODIGY/ANALOGY system (Veloso 1994) or the ADJ system (Gerevini and Serina 2010),
use a domain-independent adaptation procedure (i.e., the adaptation procedure remains the
same regardless of domain) but can be less efficient than domain-specific procedures.

Another related work is abstraction in planning such as the ALPINE (Knoblock 1993)
and PARIS (Bergmann and Wilke 1995) systems. These systems take a concrete plan and
generalize it. By doing so, it allows the reuse of the generalized plan in different problems by
instantiating its conditions. These systems require both an action model and an abstraction
model that indicates how to produce abstractions of concrete plans, to be given as input.

DARMOK (Ontañón et al. 2009) learns plan snippets by observing an annotated trace
of a human playing a real-time strategy game. These plan snippets consist of actions to be
taken either in parallel or in sequence and possibly subgoals to achieve and are indexed by
the goal that the human indicates that he or she was attempting to achieve with various con-
ditions regarding the state of the world. During planning and execution, DARMOK selects
an appropriate plan snippet to achieve the current goal and, when it encounters a subgoal,
selects another plan snippet to achieve it. In this way, plan snippets can be used to rep-
resent hierarchical structure similarly to HTNs. Unlike HTN-MAKER, DARMOK depends
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on the expert annotations to determine the purpose of each action and does not compute
preconditions for snippets.

7. CONCLUSIONS

Hierarchical task network planning is an effective problem-solving paradigm, but the
high knowledge engineering cost of developing an HTN domain description is a significant
impediment to the wider adoption of HTN planning technology. We have described a new
algorithm, HTN-MAKER, for incrementally learning HTN domain knowledge in the form
of task-reduction methods from planning states and plans applicable to those states. HTN-
MAKER produces a set of HTN methods by learning the decomposition structure of tasks
from annotated tasks and plans. The learner constructs a hierarchy in a bottom-up manner
by analyzing the sequences of actions in a plan trace and determines the preconditions of
methods by regressing goals through the subtasks of those methods.

We have presented theoretical results showing that the methods learned by HTN-
MAKER are sound and complete relative to the set of goals for which annotated tasks are
provided. Our experiments in five well-known planning domains demonstrated that HTN-
MAKER converged toward a set of HTN methods that solve all problems in the domain as
more problems are presented. In three of the five domains, an HTN planner using the learned
methods could solve large problems much more quickly than a modern classical planner.

We intend to expand this work in several future directions. First, our experiments cur-
rently use very simple annotated tasks, but our formalism and algorithms support more
complex ones. We believe that exerting more knowledge engineering effort to carefully
design annotated tasks may allow HTN-MAKER to learn a complete set of methods from
fewer problems, or to learn sets of methods that enable quicker problem solving, and would
like to explore this empirically.

Second, we are currently developing techniques for using reinforcement learning mech-
anisms on top of HTN-MAKER to learn the expected values of the HTN methods produced
by the algorithm. This will enable us to study optimality and usefulness properties of the
learned HTNs.

Third, the heuristics described in Section 5.1 were developed through intuition and
experimentation, but there may be much better ways to pick and choose among the types of
methods that HTN-MAKER is capable of generating. We would like to qualitatively compare
our current results against other possible implementations, with an aim toward developing a
formal notion of method quality independent of the numerical approach suggested earlier.

Fourth, we would like to expand the representation of preconditions in our annotated
tasks and methods. Currently, preconditions are sets of atoms from the domain. This means
that, in the BLOCKS-WORLD domain, for example, a method can have as preconditions one
block be directly on top of another or that there be one block between them, or two, or three,
and so forth. However, it is not currently possible for a method to have as its preconditions
that the first block be somewhere above the second without specifying exactly how many
blocks are between them. Other planners, including SHOP, allow method preconditions to
include derived predicates that could represent something like “is somewhere above.” We
would like to experiment with modifying HTN-MAKER to replace atoms in the precon-
ditions of methods with predicates that can be derived from them. This would make the
methods learned much more general and likely mean that fewer learning examples would
be needed.

Fifth, it would be interesting to use HTN-MAKER in an active learning environment
similar to how ICARUS (Langley and Choi 2006) works. This would mean attempting to
solve problems with an HTN planner using an existing knowledge base and if this fails
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falling back on a classical planner, then using the result of that classical planner as a new
learning instance for HTN-MAKER to improve the HTN planner’s knowledge base before
attempting future problems. Furthermore, having preconditions and postconditions on tasks
would allow us to build a planner that interleaves hierarchical and classical planning within
the processing of a single problem. Such a planner would use HTN planning whenever pos-
sible, but when it finds no applicable methods to reduce a task t from a state s, it could
use any classical planning technique to find a plan from that state s that accomplishes
the postconditions associated with t and then continue reducing later tasks for which it
does have sufficient knowledge, after learning from the example provided by the classical
planning component.
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APPENDIX A: LEMMAS AND PROOFS

Theorem 1 from Section 4.1 supports the soundness of our learning procedure. Here,
we present two lemmas that will assist in proving that theorem and then restate the theorem
and provide a proof of it.

Lemma 1. Let † be a classical planning domain, E be a finite set of learning examples for
that domain, and T be a finite set of annotated tasks for that domain. Let M be the result of
HTN-MAKER.†;E; T ;;/.

Then, for each annotated task � D .�h; �� ; �C/ 2 T , there exists a method m D
.�h; �� [ �C; hi/ 2M .

Proof . The MAKE-TRIVIAL-METHODS subroutine of HTN-MAKER generates such a
method for every annotated task. �
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Lemma 1 simply states that there is a base-case method for each annotated task that
allows that task to be reduced to the empty task network when in a state where both the
preconditions and postconditions of the annotated task hold.

Lemma 2. Let P D .†; s0; g/ be a classical planning problem with † D .S; A; �/
and PH D .†H ; s00; w0/ be an equivalent HTN planning problem with †H D
.S 0; A0; T;M; � 0/, where M is the result of HTN-MAKER.†;E; T ;;/. Let � D
ha0; a1; : : : ; ani be a plan produced by HTN-SOLVER (Algorithm 1) as a solution to PH .

Then, � is applicable to the initial state of P , s0.

Proof . Because PH is an HTN planning problem equivalent to P , we know that
s0 D s00, S D S 0, A D A0, and � D � 0. The correctness of HTN-SOLVER (which has
previously been proven by Ghallab et al. 2004) means that � must be applicable to s00, which
is s0. �

Lemma 2 does not depend on any property of the methods in the input, only on the fact
that HTN-SOLVER enforces the preconditions of the actions in the plans that it produces.

Theorem 1. Let † D .S; A; �/ be a classical planning domain, E be a finite set of learning
examples for that domain, and T be a finite set of annotated tasks for that domain. LetM be
the result of HTN-MAKER.†;E; T ;;/ with verification tasks enabled. Let P D .†; s0; g/
be a classical planning problem and PH D .†H ; s00; w0/ be an equivalent HTN planning
problem with †H D .S 0; A0; T;M; � 0/. Let � be a plan produced by HTN-SOLVER as a
solution to PH .

Then, � is a solution to P .

Proof . In order to prove that � is a solution to P , we must show both that it is appli-
cable to s0 and that it produces a state in which g holds. Lemma 2 guarantees the first part.
The remainder of this proof demonstrates the second part.

Because PH is an equivalent HTN planning problem to P , we know that s0 D s00,
S D S 0, A D A0, and � D � 0. Furthermore, we know that there exists an annotated task
� D .�h;;; g/ 2 T such that w0 D h�hi.

If � is the empty plan, then the task �h must have been reduced using the method
described in Lemma 1. Thus, s00 ˆ g. Because s00 D s0 and there are no actions in the plan,
s00 is the result of �.s0; �/, and we have shown that it satisfies the goals.

If � is not the empty plan, then some reductions were performed using learned methods
to produce it. Consider the method used for the very first reduction. Because it was generated
by HTN-MAKER with verification tasks enabled, its final subtask will be a verification task
t 0. There exists one and only one method,m D .t 0; g; hi/, for this verification task. The very
last step taken by HTN-SOLVER to produce � will have been a reduction of this verification
task using that only method. Because this method was applicable, the planner’s current state
was one in which the goals were satisfied. Because this is the last step, that current state is
also the final state �.s0; �/. �

Theorem 2 from Section 4.2 supports the completeness of our learning procedure. Here,
we present two lemmas and a proof of that theorem.

Lemma 3. Let † be a classical planning domain description, T be a set of annotated tasks
for the domain, P D .†; s0; g/ be a classical planning problem from the domain, � D
.�h;;; g/ 2 T be the equivalent annotated task to g, and � be a solution to P .

Then, the set of methods M learned by HTN-MAKER from a single learning example
e D .s0; �/ can be used to solve the HTN-equivalent problem PH D .†H ; s0; h�i/.
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Proof . If � is empty or g is satisfied in s0, then the trivial method for � is sufficient
to solve the problem. Otherwise, HTN-MAKER will have learned at least one method for
accomplishing � from � . This method must be applicable to s0 because its preconditions
were computed by regressing g through the actions of � , which is applicable to s0. Fur-
thermore, our goal regression procedure guarantees that whenever the preconditions of a
method are satisfied, there must be some way to reduce that method’s subtasks using other
methods from whose indexed instances those subtasks were chosen. �

Lemma 4. Let † be a classical planning domain description, T be a set of annotated tasks
for the domain, and M be a set of methods learned by HTN-MAKER from any finite set
of learning examples E in the domain. Let e D .s0; �/ be any learning example from
the domain, which may or may not be a member of E. Let M 0 be the set of methods that
HTN-MAKER learns from e when starting with M .

Then, if M can be used to solve a problem PH , then M 0 can be used to solve PH

as well.
Proof . If subsumption checking (Section 3.4.3) is not enabled, then HTN-MAKER

never erases a method, and hence, M � M 0. When subsumption checking is enabled, a
methodm is never removed from the set of methods unless a method m0 is being added that
is applicable whenever m is applicable and that encodes the same problem-solving strategy.
Neither adding an additional method nor replacing a method with a more general version
can reduce the set of solvable problems. �

Theorem 2. Let † be a classical planning domain description and T be a finite set of
annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that the
set of methods M generated by HTN-MAKER.†;E; T ;;/ can be used to solve the HTN
equivalent to every problem expressible using † and T .

Proof . Consider the set S of states in † and the set of goal statements G that have
an equivalent annotated task in T . Every solvable problem in † with an equivalent HTN
problem has the form P D .†; s0; g/ where s 2 S and g 2 G. Because the sets S and
G are finite, there is a finite number of such problems. Let the set of learning examples E
consist of the initial state of each such problem paired with any solution to that problem.
Lemmas 3 and 4 state that the methods that HTN-MAKER would learn from the set of
learning examples E can be used to solve the HTN equivalents of each of the problems that
form a learning example in E. We have previously shown that this includes every solvable
problem in the domain that has an HTN equivalent problem using tasks from T . �

Intuitively, this means that HTN-MAKER is able to learn a complete HTN description
of any classical planning domain. Although our theoretical result shows only that the worst
case requires learning from every problem in the domain, our experience indicates that far
fewer problems are needed in practice. In one experiment, we were able to solve all solvable
LOGISTICS domain problems that required delivering a single package to a location after
learning from six carefully chosen learning examples.

APPENDIX B: CLASSICALLY PARTITIONABLE PLANNING

Simple task network planning, using methods with totally ordered subtasks as discussed
in this article, is strictly more expressive than classical planning, and general HTN planning
is even more expressive than STN planning (Erol et al. 1996). In general, HTN planning is
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FIGURE B1. Expressivity of classically partitionable planning problems.

undecidable, STN planning is EXPSPACE-hard, and classical planning, even with macro-
operators, is NP-complete. In the rest of this section, we formalize a class of planning
problems that are more expressive than classical planning but less expressive than general
STN planning, and show that the methods learned by HTN-MAKER can be used to solve
planning problems in this class, even though they were learned from solutions to classical
planning problems.

Consider again the BLOCKS-WORLD planning domain, in which a robotic arm moves
blocks around on a table. Suppose we have a planning problem in which block A is ini-
tially on the table and needs to be moved first to on top of block B, then to on top of
block C, and then back to the table. This cannot be represented as a classical planning
problem without introducing function symbols into the representation language or other-
wise modifying the domain to directly encode information about what facts were true in
previous states. On the other hand, it could easily be represented as an HTN planning prob-
lem, where the initial task network is <(Put-On-Block A B), (Put-On-Block A
C), (Put-On-Table A)>. The methods learned by HTN-MAKER on learning exam-
ples from the classical BLOCKS-WORLD domain can be used by an HTN planner to solve
problems of this form.

We formalize the notion of the class of planning problems described earlier as follows.
Let EG D hg0; g1; : : : gni be a sequence of goal statements from a classical planning domain.
Then PP D .†; s0; EG/ is a classically partitionable planning problem. A plan � is a solu-
tion to PP if and only if � may be partitioned into a sequence of subplans h�0; �1; : : : ; �ni
such that each �i is applicable in si and produces state siC1 such that siC1 ˆ gi .

Figure B1 shows the relationship between classical planning problems, classically par-
titionable planning problems, and general HTN planning problems. Note that classically
partitionable planning problems appear in many planning domains, including LOGISTICS,
BLOCKS-WORLD, ROVERS, and others that were used as benchmarks in past International
Planning Competitions.

Given a classically partitionable planning problem PP D .†; s0; hg0; g1; : : : ; gni/ and
a finite set of annotated tasks T , there is an equivalent HTN planning problem PH D
.†H ; s0; ht0; t1; : : : ; tni/, where † D .S; A; �/, †H D .S; A; T;M; �/, each task in T
has an annotated version in T , and for each 0 < i � n, there exists an annotated task
� D .ti ;;; gi / 2 T . Informally, the initial task network of any equivalent HTN plan-
ning problem contains the equivalent annotated task to each goal set in the classically
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partitionable planning problem, in the same order. For any classically partitionable plan-
ning problem PP D .†; s0; EG/, we can construct an equivalent HTN planning problem
PH D .†H ; s0; w0/ by making an equivalent annotated task for each goal set in EG.

Theorem 3. Let PP D .†; s0; EG/ be a solvable classically partitionable planning problem
and T be a finite set of annotated tasks such that PH D .†H ; s0; w0/ is an equivalent HTN
planning problem to PP .

Then, there exists a finite set of learning examples E such that the set of methods M
learned by HTN-MAKER.†;E; T ;;/ will allow an HTN planner to solve PH .

Proof. Theorem 2 guarantees that there exists a finite set of learning examples E such
that a set of methods M generated by HTN-MAKER.†;E; T ;;/ can be used to solve the
HTN equivalent to every solvable classical planning problem expressible with † and T .
We will show that any set of methods that can solve the HTN equivalent to every classical
planning problem expressible with † and T can also solve the HTN equivalent to every
classically partitionable planning problem expressible with † and T .

If PP has a single goal set, then the HTN equivalent to it is the same as the HTN
equivalent to the classical planning problem that uses that goal set. Thus, it can be solved
using M .

Suppose that PP has n > 1 goal sets and that this theorem has been proven for all
classically partitionable planning problems with n � 1 goal sets. Then an HTN planner
using M can solve the HTN equivalent to the classically partitionable planning problem
.†; s0; hg0; g1; : : : gn�1i/. Solving this produces a state s and an empty task network. If the
classically partitionable planning problem had instead included goal set gn at the end of
EG, then the planner would reach a point at which the current state is s and the current task

network is tn by following the same sequence of steps. This is itself the HTN equivalent to
a classical planning problem in the domain, and thus,M can be used to solve it. �

APPENDIX C: NECESSITY OF VERIFICATION TASKS

In Section 4.1, we showed that any solution generated by a sound HTN planner on an
HTN planning problem using methods learned by HTN-MAKER is guaranteed to be a solu-
tion to the equivalent classical planning problem, but only because of the use of verification
tasks and verification methods. Without verification tasks, there are specific cases in which
the methods learned by HTN-MAKER might be used to find a solution to an HTN planning
problem that is not a solution to the equivalent classical planning problem. This possibil-
ity exists because in a sequence of nonprimitive subtasks, a particular valid reduction of a
later nonprimitive subtask may negate an effect of an earlier nonprimitive subtask that was
needed to accomplish the highest-level task. We now show a concrete example illustrating
this situation.

Consider the annotated tasks shown in Figure C1, which could be used in the BLOCKS-
WORLD domain. These tasks are used for creating piles of varying numbers of blocks, but

FIGURE C1. Alternate annotated tasks for the BLOCKS-WORLD domain.
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FIGURE C2. An example plan in the BLOCKS-WORLD domain with learned methods.

FIGURE C3. A second example plan in the BLOCKS-WORLD domain with learned methods.

FIGURE C4. Details of methods m1 (left) and m3 (right) from Figures C2 and C3.

unlike the task of Figure 5, these allow piles to be nested. That is, if A is on B and B is on
C, then A-B-C is a three-pile, A-B is a two-pile, and B-C is a two-pile, and these statements
are true regardless of whether or not there are additional blocks below C or above A. This is
not necessarily a wise way to define annotated tasks for the BLOCKS-WORLD domain, but it
is legal.
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FIGURE C5. A plan generated from the methods learned in Figures C2 and C3.

Suppose that the learning example shown in Figure C2 were an input to HTN-MAKER
with these annotated tasks. In addition to many others, HTN-MAKER could learn meth-
ods m0 and m1 shown in the figure. Further suppose that the learning example shown in
Figure C3 was an input to HTN-MAKER with these annotated tasks. In addition to many
others, HTN-MAKER could learn methods m2 and m3 shown in the figure.

Figure C4 shows the details of methods m1 (on the left) and m3 on the right. Method
m1 seems logical: the first subtask puts the bottom part of the pile together, then the second
subtask completes the top part of the pile. However, there is no way for this method to
guarantee that the way the planner chooses to accomplish the second subtask will not destroy
the bottom part of the pile. Indeed, method m3 does exactly that.

However, methods m1, m2, and m3 could be used by a sound HTN planner to produce
the plan of Figure C5 when given that initial state and task. Note that (on B C) is not
true in state s5 of this figure, which means that the postconditions of the annotated task
(Make-3Pile A B C) do not hold. Thus, this plan is a solution to the HTN planning
problem, but not to its equivalent classical planning problem.

APPENDIX D: EXPERIMENTAL DOMAINS

We used five different planning domains to experimentally evaluate HTN-MAKER. The
HTN-MAKER algorithm works only for planning domains that have a classical representa-
tion. It does not support conditional effects, numerical values, temporally extended goals,
or other extensions included in the ADL language. Extending HTN-MAKER to work in
domains that require this more expressive representation language remains future work.

The first, LOGISTICS, was first introduced by Veloso (1994) and was used in the Second
International Planning Competition (IPC-2). In LOGISTICS, the objective is to deliver pack-
ages between locations in various cities using trucks for intracity transport and airplanes for
intercity (and possibly intracity) transport.

The second domain, BLOCKS-WORLD, has long been used as a testbed and was also
used in IPC-2. This domain consists of a number of blocks sitting on a table (possibly on
top of each other) and a robotic hand that can grasp one block at a time. The objective is
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FIGURE D1. Annotated tasks in LOGISTICS.

FIGURE D2. Annotated tasks in BLOCKS-WORLD.

to change the configuration of the blocks on the table using the robotic hand. While this
domain is conceptually simple, large problems remain quite a challenge for planners.

SATELLITE and ROVERS were introduced for IPC-3. The SATELLITE domain involves
using instruments on satellites to record images of various types and targets. The ROVERS
domain involves control of a set of robots navigating Mars, taking images as in the
SATELLITE domain and analyzing rock and soil samples from various locations.

The fifth, ZENO-TRAVEL, was also first used in IPC-3. It uses airplanes to transport
passengers between cities. The interesting feature of the ZENO-TRAVEL domain, in the
classical planning variant, is that moving an airplane requires the use of fuel, and thus,
airplanes may need to be refueled between flights.

In the LOGISTICS domain, our measure of problem size is the number of packages to
be delivered. In the BLOCKS-WORLD domain, our measure of problem size is the number
of blocks to be reorganized. In the SATELLITE domain, our measure of problem size is the
number of images to be collected. In the ROVERS domain, our measure of problem size
is the number of waypoints, each of which has a 33% probability of having a rock and/or
soil sample. In the ZENO-TRAVEL domain, our measure of problem size is the number of
passengers to be transported. In each of these domains, there are many factors that determine
the difficulty of a problem, but the feature we have chosen to measure problem size is that
which most directly matches the number of goals the planner must achieve. For example,
at each problem size in the LOGISTICS domain, some problems have 12 locations and four
trucks divided between three cities, while others have 23 locations and six trucks divided
between four cities.

The formal notion of equivalence between a classical planning problem and an HTN
planning problem, as defined in Section 2.3, requires that there be a single task in the initial
task network of the HTN planning problem and that the annotations on that task include all
of the goals of the classical planning problem. In practice, strictly following this scheme can
make the evaluation difficult. This would require the construction of one annotated task for
each possible goal atom, one annotated task for each conjunction of two goals, another for
each conjunction of three goals, and so forth.

We would like to be able to learn methods from solutions to problems with few goals
and use them to solve problems with many goals. Therefore, we have designed our annotated
tasks in such a way that an ordered sequence of tasks, each of which represents one goal, will
be equivalent to a single task that represents all of the goals together. In short, this means
that the tasks must be designed in such a way that nothing the planner does to accomplish
tasks ti through tn will remove the postcondition associated with task ti�1.
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Figure D1 contains the only annotated task used for our experiments in the LOGISTICS
domain, which causes a package ?obj to be at a location ?dst. For a classical planning
problem with goals g0; g1; : : : gn, the initial task network of the pseudo-equivalent HTN
planning problem will consist of n instances of the Deliver-Pkg task with different param-
eters. The ordering of these tasks is arbitrary. The nature of the LOGISTICS domain is such
that only two types of actions can remove the ( obj-at ?obj ?dst ) predicate: loading
the object into a truck and loading the object into an airplane. Taking either of these actions
has no effect on any object in the domain other than ?obj, and thus, HTN-MAKER will not
learn any method for accomplishing a delivery task that loads any package into a truck or
airplane other than the one that it is delivering. Thus, once an object has been delivered to
its destination the planner will not move it.

The BLOCKS-WORLD domain requires two tasks, which are shown in Figure D2. To
preserve the postconditions of earlier tasks when accomplishing latter tasks, they must be
serialized in a particular order: no block is placed until all blocks underneath it have been
placed. Similarly to LOGISTICS, it is never beneficial to move a block unless it is either
the block that is being placed, currently above the block that is being placed, or currently
above the block it is to be placed upon. Thus, HTN-MAKER will not learn a method that
moves a block that is not in one of these three categories. A block that is already in position
and that has all blocks below it already in position will never fall into such a category.

FIGURE D3. Annotated tasks in SATELLITE.

FIGURE D4. Annotated tasks in ROVERS.

FIGURE D5. Annotated tasks in ZENO-TRAVEL.
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Thus, the more complex task shown in Figure 5 can be simulated with the sequence of tasks
<(Put-On-Table B), (Put-On-Block A B)>.

Figure D3 contains the single annotated task used in the SATELLITE domain, which
takes an image in a certain direction ?dir of type ?mode. Once an image has been col-
lected, there is no action in the domain that can remove this fact. Therefore, this annotated
task trivially satisfies our requirements regardless of ordering.

Three tasks are needed to model the ROVERS domain. Figure D4 shows these three
tasks, one of which is very similar to the task from the SATELLITE domain. The other two
cause a sample of soil or rocks to be collected from a location ?loc and information about
it communicated back to the base station. Once a sample or image of any type has been col-
lected and transmitted back to the lander, there is no action in the domain that can remove
this fact. Therefore, these annotated tasks trivially satisfy our requirements regardless
of ordering.

The annotated task for the ZENO-TRAVEL domain is listed in Figure D5. It transports a
passenger ?p to a city ?c. Like the similar LOGISTICS domain, there is no reason to move a
passenger that is currently in a city and not listed in the current task; thus, a passenger who
is at his destination will remain there regardless of task ordering.

Although it is possible to define annotated tasks with richer semantics, for these exper-
iments, we have chosen to provide the minimum amount of knowledge to our system. The
goals of a classical planning problem have no explicit ordering, but the tasks of a STN
problem do have a strict ordering, which must be provided by the problem’s author. As dis-
cussed earlier, we used an arbitrary ordering in all domains except for BLOCKS-WORLD.
In some circumstances, this might be considered to give our STN planner, HTN-SOLVER,
an advantage, because it does not need to waste time attempting possible goal serializations
that cannot be completed. In other circumstances, this puts HTN-SOLVER at a disadvan-
tage, because it will be unable to interleave actions that accomplish multiple subgoals as a
classical planner would.
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