
Learning Methods to Generate Good Plans:
Integrating HTN Learning and Reinforcement Learning

Chad Hogg
Dept. of Computer Sci. & Eng.

Lehigh University
Bethlehem, PA 18015, USA
cmh204@lehigh.edu

Ugur Kuter
Institute for Advanced Computer Studies

University of Maryland
College Park, MD 20742, USA
ukuter@cs.umd.edu

Héctor Muñoz-Avila
Dept. of Computer Sci. & Eng.

Lehigh University
Bethlehem, PA 18015, USA
hem4@lehigh.edu

Abstract

We consider how to learn Hierarchical Task Networks
(HTNs) for planning problems in which both the quality of
solution plans generated by the HTNs and the speed at which
those plans are found is important. We describe an integration
of HTN Learning with Reinforcement Learning to both learn
methods by analyzing semantic annotations on tasks and to
produce estimates of the expected values of the learned meth-
ods by performing Monte Carlo updates. We performed an
experiment in which plan quality was inversely related to plan
length. In two planning domains, we evaluated the planning
performance of the learned methods in comparison to two
state-of-the-art satisficing classical planners, FASTFORWARD
and SGPLAN6, and one optimal planner, HSP*

F . The results
demonstrate that a greedy HTN planner using the learned
methods was able to generate higher quality solutions than
SGPLAN6 in both domains and FASTFORWARD in one. Our
planner, FASTFORWARD, and SGPLAN6 ran in similar time,
while HSP*

F was exponentially slower.

Introduction
We consider the problem of learning Hierarchical Task Net-
work (HTN) methods that can be used to generate high-
quality plans. HTNs are one of the best-known approaches
for modeling expressive planning knowledge for complex
environments. There are many AI planning applications that
require such rich models of planning knowledge in order to
generate plans with some measure of quality.

Learning HTNs means eliciting the hierarchical structure
relating tasks and subtasks from a collection of plan traces.
Existing works on learning hierarchical planning knowledge
describe ways to learn a set of HTN decomposition methods
for solving planning problems from a collection of plans and
a given action model, but they do not consider the quality of
the plans that could be generated from them (Hogg, Muñoz-
Avila, and Kuter 2008; Nejati, Langley, and Könik 2006;
Reddy and Tadepalli 1997).

Generating optimal plans is a difficult problem; there are
an infinite number of possible solutions to planning prob-
lems in many domains. Because searching the entire space
of plans is intractable, it is desirable to design an algorithm

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to quickly find plans that are of high-quality but not always
optimal.

In this paper, we describe a new synergistic integration of
two AI learning paradigms, HTN Learning and Reinforce-
ment Learning (RL). This integration aims to learn HTN
methods and their values, which can be used to generate
high-quality plans. Reinforcement Learning is an artificial
intelligence technique in which an agent learns, through in-
teraction with its environment, which decisions to make to
maximize some long-term reward (Sutton and Barto 1998).
Hierarchical Reinforcement Learning (HRL) has emerged
over recent years (Parr 1998; Dietterich 2000) as a formal
theory for using hierarchical knowledge structures in RL.
However, existing HRL techniques do not learn HTN meth-
ods nor their values; they assume a hierarchical structure is
given as input.

Our contributions are as follows:

• We describe an RL formalism in which an agent that se-
lects methods to decompose tasks is rewarded for produc-
ing high-quality plans.

• We describe how to learn methods and their values based
on this formalism. Our approach consists of three re-
lated algorithms: (1) our new HTN Learning algorithm,
called Q-MAKER, that learns HTN methods by analyz-
ing plan traces and task semantics and computes initial
estimates of the values of those methods; (2) an RL algo-
rithm, called Q-REINFORCE, that refines the values asso-
ciated with methods by performing Monte Carlo updates;
and (3) a version of the SHOP planner, called Q-SHOP,
that makes greedy selections based on these method val-
ues. To the best of our knowledge, this is the first formal-
ism developed for the purpose of integrating these two
well-known research paradigms.

• In our experiments, our planner Q-SHOP using methods
learned by Q-MAKER and refined by Q-REINFORCE was
usually able to generate plans of higher quality than those
produced by two satisficing classical planners, FASTFOR-
WARD and SGPLAN6. The time required by our plan-
ner was within an order of magnitude of the time used by
these satisficing planners. In many cases, our planner pro-
duced optimal plans while executing exponentially faster
than a planner, HSP*

F , that guarantees optimality.



Preliminaries
We use the standard definitions for states, planning opera-
tors, actions, and classical planning problems as in classical
planning (Ghallab, Nau, and Traverso 2004), and tasks, an-
notated tasks, task networks, methods, and ordered task de-
compositions in HTN Planning and Learning as in the HTN-
MAKER system (Hogg, Muñoz-Avila, and Kuter 2008). We
summarize these definitions below.

Classical Planning
A state s is a set of ground atoms. An action a has a name,
preconditions, and positive and negative effects. An action
a is applicable to a state s if the preconditions of a hold
in s. The result of applying a to s is a new state s′ that
is s with the negative effects of a removed and the posi-
tive effects added. This relationship is formally described
in a state-transition function γ : S × A → S . A plan
π = 〈a0, a1, . . . , an〉 is a sequence of actions. A plan is
applicable to a state s if the preconditions of a0 are ap-
plicable in s, a1 is applicable in γ(s, a0), and so forth.
The result of applying a plan π to a state s is a new state
apply(s, π) = γ(γ(. . . (γ(s, a0), a1) . . .), an).

A classical planning problem P = (S,A, γ, s0, g) con-
sists of a finite set of states, a finite set of actions, a state-
transition function, an initial state, and a goal formula. A
solution to a classical planning problem P is a plan π such
that π is applicable in s0 and the goal formula holds in
apply(s0, π).

HTN Planning & Learning
A task t is a symbolic representation of an activity in the
world. A task is either primitive, in which case it corre-
sponds to the name of an action, or is nonprimitive. A
task network w = 〈t0, t1, . . . , tn〉 is an ordered sequence
of tasks. A methodm consists of a name, preconditions, and
subtasks. The name is a nonprimitive task. The subtasks are
a task network.

A method is applicable in a state s to a task t if the
method’s name is t and the method’s preconditions hold in
s. The result of applying a method to a task t is called a
reduction of t using m, and consists of the state s and the
subtasks of m. The result of reducing a task t with method
m and recursively reducing any nonprimitive subtasks of m
with other methods until only primitive tasks remain is a de-
composition of t with m, decomp(t,m) = π.

An HTN planning problem P = (S,A, γ, T ,M, s0, w0)
consists of a finite set of states, a finite set of actions, a state-
transition function, a finite set of tasks, a finite set of meth-
ods, an initial state, and an initial task network. A solution
to an HTN planning problem is a plan π that is a decompo-
sition of the initial task network and that is applicable in the
initial state.

An annotated task t is a task with associated precondi-
tions and postconditions that specify what it means to ac-
complish that task. Using annotated tasks, we can define
an equivalence between a classical planning problem and an
HTN planning problem.

A Model For Learning Valued Methods
The usual process for solving an HTN planning problem be-
gins with the initial state and initial task network. It pro-
ceeds by recursively reducing each of the tasks in the initial
task network. When a primitive task is reached, it is ap-
plied to the current state and appended to an initially empty
plan. When a nonprimitive task is reached, a decision must
be made regarding which applicable method to choose or
that task and the current state. If the decomposition cannot
be completed, this choice becomes a backtracking point.

We model the problem of selecting an applicable method
m to reduce a nonprimitive task t as a Reinforcement Learn-
ing problem. Thus, the agent is the procedure that makes this
choice. When the agent chooses method m to reduce task t
it receives a numeric reward from the environment, denoted
r(t,m). Traditionally, RL uses a slightly different terminol-
ogy than we adopt here. A state in RL literature refers to
a situation in which the agent must make a decision, which
in our case is the current task to be decomposed. An action
in RL literature refers to the selection made by the agent,
which in our case is the method used to reduce the current
task. In this paper, state and action have the same meaning
as in the planning literature.

Decomposing nonprimitive tasks is an episodic problem;
an episode ends when a plan consisting of only primitive
tasks is reached. The objective of the agent is to maximize
the total reward received within an episode. This total re-
ward is called the return, and is written R(decomp(t,m)).
Because this problem is episodic, future rewards do not need
to be discounted and the return is simply the sum of all re-
wards earned in the rest of the episode.

To assist in making informed decisions, the agent main-
tains a method-value function Q : (T × M) → R. The
value of Q(t,m), called the Q-value of m, represents the
expected return generated by beginning a decomposition of
t by reducing it with m. If the Q-value estimates are ac-
curate, the agent can maximize its likelihood of receiving
a high return by selecting the method with highest Q-value
among all methods applicable in the current state.

The reason that our method-value function does not spec-
ify the value of reducing task t with methodm while in state
s is that there are typically very many possible states in a
planning domain. Thus, it would be impractical to compute
state-specific values for each method. Instead, our system
implicitly uses the state, since the agent is only capable of
selecting among those methods that are applicable in the cur-
rent state. This abstracts away those features of the state that
are not directly relevant to this reduction and makes storing
a method-value function feasible.

We use Monte Carlo techniques for solving the RL prob-
lem, which means that at the end of an episode the agent
updates its method-value function to reflect those rewards
that it actually received from the environment. The Q-value
of a method is calculated as a function of the returns that
agent has actually received when using it in the past. The
update formula for Q(t,m) is shown in Equation 1:

Q(t,m)← Q(t,m)+α(R(decomp(t,m))−Q(t,m)) (1)



The term α is referred to as the step-size parameter,
and can be tuned to give more or less weight to more re-
cent experiences. We maintain a method-count function
k : (T × M) → Z+ and set α = 1

k(t,m)+1 . This value
of α weights older and more recent experiences equally, and
thus the Q-value of a method is the average of the returns
received when using it.

A learning example e = (s0, π) consists of a state s0 and
a plan π that is applicable in that state. We define a val-
ued HTN learning problem as a tuple L = (S,A, γ, T , E),
where S is a finite set of states, A is a finite set of actions, γ
is the state-transition function, T is a finite set of annotated
tasks, and E is a finite set of learning examples. A solution
to a valued HTN learning problem is a set of methods M
and a method-value function Q such that:

1. Any solution generated by a sound HTN planner using
the methods inM to an HTN planning problem with an
equivalent classical planning problem is also a solution to
the equivalent classical planning problem.

2. The equivalent HTN planning problem to every classical
planning problem in the domain can be solved by a sound
HTN planner using the methods inM.

3. If a sound HTN planner that always selects the method
with highest Q-value among applicable methods gener-
ates a solution to an HTN planning problem, there does
not exist any other solution that produces a higher return.

Note that even if the rewards returned by the environment
are predictable (that is, the reward for reducing a given task
t with a given method m is always the same), finding a so-
lution to a valued HTN learning problem is very difficult
and in some cases impossible. Because we abstract away
the states, it is likely that for some two methods m1 and m2

there exists states s1 and s2 such that m1 and m2 are each
applicable in both s1 and s2 and using m1 while in state
s1 will result in greater returns than using m2 in that state,
while the reverse is true for s2. Therefore, we attempt to find
approximate solutions to valued HTN learning problems in
which the first two conditions hold and the agent will receive
good but not necessarily optimal returns.

Solving Valued HTN Learning Problems
Our approach to solving valued HTN learning problems has
three phases:

• Learning methods and initial Q-values. This phase learns
HTN methods while simultaneously obtaining initial esti-
mates for the Q-values from the provided learning exam-
ples. The learning examples are analyzed to find action
sequences that accomplish an annotated task, producing
methods in a bottom-up fashion. The initial Q-values of
these methods are calculated from the rewards produced
by the decompositions that are built bottom-up from the
learning examples, using Equation 1.

• Refining Q-values. In this phase no new methods are
learned. Instead, the Q-values of the methods are up-
dated through Monte Carlo techniques. Beginning from
an arbitrary state and task network in the domain, our

Monte Carlo algorithm produces a decomposition top-
down, then updates the Q-values of the methods used as
in Equation 1. Unlike the first phase, the agent explores
the method-selection space.

• Planning with Q-values. The final phase exploits the in-
formation captured in the Q-values of methods to find so-
lutions to HTN planning problems that maximize returns.

Q-MAKER: Learning Methods & Initial Q-Values
The Q-MAKER procedure extends the HTN learning algo-
rithm HTN-MAKER (Hogg, Muñoz-Avila, and Kuter 2008)
to compute initial estimates of the Q-values of the methods
that it learns. Specifically, Q-MAKER takes as input a val-
ued HTN learning problem L = (S,A, γ, T , E) and gener-
ates a set of methodsM, a method-value function Q, and a
method-count function k as a solution for L.

HTN-MAKER iterates over each subplan π′ of π. Before
processing any segment of the plan, it first processes each
subplan of that segment. It analyzes each subplan to deter-
mine if any annotated tasks have been accomplished by that
subplan. If so, it uses hierarchical goal regression to deter-
mine how the annotated task was accomplished and creates
a method that encapsulates that way of accomplishing the
task. When a plan segment accomplishes an annotated task,
that annotated task may be used as a subtask when creating
methods for any plan segment of which it is a subplan. In
this way, decomposition trees are created bottom-up.

In addition to learning the structure and preconditions of
these methods, Q-MAKER learns initial Q-values and main-
tains a count of the number of times a method has been ob-
served. When a new method is learned, Q-MAKER simu-
lates decomposition using that method and its descendants
in the learning example and uses the returns as the initial
Q-value. When a method had already been learned but is
observed again from a new plan segment or entirely differ-
ent learning example, the initial estimate of the Q-value is
updated to include the new scenario using Equation 1 and
the counter for that method is incremented. Thus, the initial
estimate of the Q-value of a method that was observed sev-
eral times is the average return from those decompositions
using it that appear in the learning examples.

Q-REINFORCE: Refining Q-Values
In the second phase, we refine the initial Q-value estimates
using Monte Carlo methods. The RL component is neces-
sary because the initial Q-value estimates may be biased to-
ward the particular learning examples from which the meth-
ods were learned. In practice, it might be possible to use
those methods in ways that did not appear in the learning
examples and that result in very different returns.

Algorithm 1 shows the Q-REINFORCE procedure. Q-
REINFORCE recursively reduces an initial task network.
At each decision point, Q-REINFORCE selects randomly
among the applicable methods, so that the Q-values of all
methods have an opportunity to be updated. This makes Q-
REINFORCE an off-policy learner, since it follows a random-
selection policy while improving a greedy-selection pol-
icy. Thus, it has an opportunity to explore portions of the



Algorithm 1: The input includes an HTN planning
problem P = (S,A, γ, T ,M, s0, w0), a method-value
function Q, and a method-count function k. The output
is a plan π, the total return received from decomposing
the tasks in w0, and updated method-value function Q
and method-count function k.

Procedure Q-REINFORCE(P,Q, k)1
begin2
π ← 〈〉 ; s← s0 ; R = 03
for t ∈ w0 do4
if t is primitive then5

randomly select action a ∈ A that matches t6
if a is applicable to s then7
s← γ(s, a) ; π ← π · 〈a〉8

else return FAIL9

else10
LetM′ ⊆M be those methods for t applicable in s11
ifM′ 6= ∅ then12

randomly select m ∈M′13
P ′ ← (S,A, γ, T ,M, s,Subtasks(m))14
(π′, R′, Q, k)← Q-REINFORCE(P ′, Q, k)15
Q(t,m)← Q(t,m) + α(R′ + r(t,m)−Q(t,m))16
k(t,m)← k(t,m) + 117
s← apply(s, π′) ; π ← π · π′18
R← R+R′ + r(t,m)19

else return FAIL20

return (π,R,Q, k)21

end22

method-selection space that could not be observed in the
learning examples.

From an initially empty plan, current state, and 0 total re-
turn (Line 3), the algorithm processes each task in the task
network in order (Line 4). Primitive tasks advance the state
and are appended to the current plan (Lines 8), but do not
involve a decision by the agent and do not produce a re-
ward. For a nonprimitive task, the agent selects an applica-
ble method at random (Line 13). The Q-REINFORCE algo-
rithm is recursively called to decompose the subtasks of the
selected method (Line 15). This provides the return from
any further reductions of the subtasks of the method, which
when summed with the reward of this method selection is
the return that the agent receives. The Q-value of the se-
lected method is updated with this return using Equation 1
(Line 16), and the plan and state are suitably updated. The
return from this selection is added to a counter of total return
to be used in a higher recursive call, if one exists (Line 19).

Q-SHOP: Planning With Q-Values
We also wrote an HTN planner, Q-SHOP, that incorporates
our agent for method-selection. The Q-SHOP algorithm is
an extension of the SHOP planning algorithm (Nau et al.
1999). While in SHOP the first method encountered is se-
lected, in Q-SHOP our agent selects the method with high-
est Q-value. In our implementation Q-SHOP does not up-
date Q-values based on its experience, but it could easily be

modified to do so.

Experiments
In these experiments we attempted to use our Reinforcement
Learning formalism to find plans of minimal length. Thus,
when the agent reduces a task t with a method m the reward
it receives is the number of primitive subtasks of m multi-
plied by -1. In this scenario, maximizing returns minimizes
the length of the plan generated.

We performed experiments in two well-known plan-
ning domains, BLOCKS-WORLD and SATELLITE, compar-
ing the Q-SHOP algorithm versus two satisficing planners,
FASTFORWARD and SGPLAN6, and one optimal planner,
HSP*

F . HSP*
F was the runner-up in the sequential optimiza-

tion track of the most recent International Planning Com-
petition (IPC-2008), while SGPLAN6 and FASTFORWARD
were among the best participants in the sequential satis-
ficing track. The source code and data files for these ex-
periments are available at http://www.cse.lehigh.
edu/InSyTe/HTN-MAKER/.

Our experimental hypothesis was that using the meth-
ods and method-value function learned by Q-MAKER and
refined by Q-REINFORCE, Q-SHOP would produce plans
that are shorter than those produced by FASTFORWARD and
SGPLAN6 in comparable time. We also compared against
SHOP using methods learned by Q-MAKER but without the
method-value function.

Within each domain, we randomly generated 600 train-
ing and 600 tuning problems of varying sizes. First we
ran Q-MAKER on solutions to the training problems to pro-
duce a set of methods and initial estimate of the method-
value function. We refer to results from planning with the
methods while ignoring the method-value function as “No
QVal”, and planning with the methods and initial estimate
of the method-value function as “Phase 1”. Then we used
Q-REINFORCE to solve the 600 tuning problems, updat-
ing the Q-values of the methods learned earlier. We refer
to results from planning with the methods and the refined
method-value function as “Phase 1+2”.

For each domain and each of several problem sizes, we
then randomly generated 20 testing problems. We attempted
to solve each testing problem using the three classical plan-
ners, as well as SHOP using the “No QVal” methods and
Q-SHOP using the methods and the “Phase 1” and “Phase
1+2” method-value functions. FASTFORWARD, SGPLAN6,
SHOP, and Q-SHOP solved the problems in less than a sec-
ond, while the optimal planner HSP*

F was much slower. In
fact, for problems of even modest size, HSP*

F was unable to
find a solution within a 30-minute time limit.

Figure 1 shows the average plan length generated by
the satisficing planners as a percentage of the optimal plan
length at each problem size in the BLOCKS-WORLD do-
main. That is, a value of 100 means that an optimal plan was
generated, while 200 means the plan generated was twice as
long as an optimal plan. Of these planners, Q-SHOP using
the “Phase 1+2” method-value function performs best. In
fact, in all but 3 problems out of 420, it found an optimal
plan. Next best was Q-SHOP using the “Phase 1” method-
value function, which produced plans an average of 13.3%



100

120

140

160

180

200

220

5 10 15 20 25 30 35 40

Problem Size

No QVal
SGPlan

FF

Phase 1
Phase 1+2

Figure 1: Average Percent Of Shortest Plan Length By Prob-
lem Size In BLOCKS-WORLD Domain

longer than optimal. Third best was SHOP with no Q-values
(13.6% longer), then FASTFORWARD (16.1% longer), then
SGPLAN6 (73.7% longer). None appeared to be becoming
more suboptimal on larger problems than small ones; in fact
the opposite was the case for SHOP and Q-SHOP.

The same data for the SATELLITE domain is shown in
Figure 2. These results are much closer, but Q-SHOP re-
mains the best choice, producing plans on average 7.6%
longer than optimal. In this domain, Q-SHOP produced
the same quality plans whether the Q-values were refined
or not. Each of the planners is trending toward plans that
are further from optimal as the difficulty of the problems in-
creases. We believe that the reason our algorithm performed
better in BLOCKS-WORLD than SATELLITE is due to the
task representations used. Because Q-SHOP is an Ordered
Task Decomposition planner, it is restricted to accomplish-
ing the tasks in the initial task network in the order given. In
BLOCKS-WORLD there was a natural ordering that we used,
but in SATELLITE this was not the case and the ordering fre-
quently made generating an optimal plan impossible.

Related Work
None of the existing algorithms for HTN Learning attempt
to learn methods with consideration of the quality of the
plans that could be generated from them. Rather, they
aim at finding any correct solution as quickly as possi-
ble. These works include HTN-MAKER (Hogg, Muñoz-
Avila, and Kuter 2008), which learns HTN methods based
on semantically-annotated tasks; LIGHT (Nejati, Langley,
and Könik 2006), which learns hierarchical skills based on
a collection of concepts represented as Horn clauses; X-
LEARN (Reddy and Tadepalli 1997), which learns hierarchi-
cal d-rules using a bootstrapping process in which a teacher
provides carefully chosen examples; CAMEL (Ilghami et al.
2005), which learns the preconditions of methods given their
structure; and DINCAT (Xu and Muñoz-Avila 2005), which
uses a different approach to learn preconditions of methods

100

105

110

115

120

2 4 6 8 10 12

Problem Size

NoQval
SGPlan

FF

Phase 1
Phase 1+2

Figure 2: Average Percent Of Shortest Plan Length By Prob-
lem Size In SATELLITE Domain

given their structure and an ontology of types.
The QUALITY system (Pérez 1996) was one of the first

to attempt to learn to produce high-quality plans. QUAL-
ITY produced PRODIGY control rules from explanations of
why one plan was of higher quality than another. These
rules could be further processed into trees containing the
estimated costs of various choices. At each decision point
while planning, PRODIGY could reason with these trees to
select the choice with lowest estimated cost.

In this paper, we described an integration of HTN Learn-
ing with Reinforcement Learning to produce estimates of
the costs of using the methods by performing Monte Carlo
updates. As opposed to other RL methods such as Q-
learning, MC does not bootstrap (i.e., make estimates based
on previous estimates). Although in some situations learn-
ing and reusing knowledge during the same episode allows
the learner to complete the episode more quickly, this is not
the case in our framework; RL is used to improve the quality
of plans generated but does not affect satisfiability.

Hierarchical Reinforcement Learning (HRL) has been
proposed as a successful research direction to alleviate the
well-known “curse of dimensionality” in traditional Rein-
forcement Learning. Hierarchical domain-specific control
knowledge and architectures have been used to speed the Re-
inforcement Learning process (Shapiro 2001). Barto (2003)
has written an excellent survey on recent advances on HRL.

Our Q-MAKER procedure has similarities with the use
of options in Hierarchical Reinforcement Learning (Sutton,
Precup, and Singh. 1999). In Q-MAKER, a high-level ac-
tion is an HTN method, whereas in HRL with options, it
would be a policy that may consists of primitive actions or
other options. The important difference is that Q-MAKER
learns those HTN methods that participate in the Reinforce-
ment Learning process, whereas in the systems with which
we are familiar options are hand-coded by experts and given
as input to the Reinforcement Learning procedure.

Parr (1998) developed an approach to hierarchically struc-



turing MDP policies called Hierarchies of Abstract Ma-
chines (HAMs). This architecture has the same basis as op-
tions, as both are derived from the theory of semi-Markov
Decision Processes. A planner that uses HAMs composes
those policies into a policy that is a solution for the MDP. To
the best of our knowledge, the HAMs in this work must be
supplied in advance by the user.

There are also function approximation and aggregation
approaches to hierarchical problem-solving in RL settings.
Perhaps the best known technique is MAX-Q decomposi-
tions (Dietterich 2000). These approaches are based on hi-
erarchical abstraction techniques that are somewhat similar
to HTN planning. Given an MDP, the hierarchical abstrac-
tion of the MDP is analogous to an instance of the decom-
position tree that an HTN planner might generate. Again,
however, the MAX-Q tree must be given in advance and it is
not learned in a bottom-up fashion as in our work.

Conclusions
We have described a new learning paradigm that integrates
HTN Learning and Monte Carlo techniques, a form of Re-
inforcement Learning. Our formalism associates with HTN
methods Q-values that estimate the returns that a method-
selection agent expects to receive by reducing tasks with
those methods. Our work encompasses three algorithms:
(1) Q-MAKER, which follows a bottom-up procedure start-
ing from input traces to learn HTN methods and initial es-
timates for the Q-value associated with these methods, (2)
Q-REINFORCE, which follows a top-down HTN plan gen-
eration procedure to refine the Q-values, and (3) Q-SHOP,
a variant of the HTN planner SHOP that reduces tasks by
selecting the applicable methods with the highest Q-values.

We demonstrated that, with an appropriate reward struc-
ture, this formalism could be used to generate plans of good
quality, as measured by the inverse of plan length. In the
BLOCKS-WORLD domain, our experiments have demon-
strated that Q-SHOP consistently generated shorter plans
than FASTFORWARD and SGPLAN6, two satisficing plan-
ners frequently used in the literature for benchmarking pur-
poses. In fact, the Q-SHOP plans were often optimal. In
the SATELLITE domain Q-SHOP and FASTFORWARD per-
formed similarly while SGPLAN6 was poorer. We also
tested the planner HSP*

F , which always generates optimal
plans, but it runs much more slowly than the other plan-
ners and could only solve the simplest problems within the
bounds of our hardware.

The addition of Q-values allowed Q-SHOP to find bet-
ter plans than SHOP, demonstrating that incorporating Rein-
forcement Learning into the HTN Learning procedure was
beneficial. The experiments also demonstrated a synergy
between Q-MAKER and Q-REINFORCE: in the BLOCKS-
WORLD domain the plans generated with Q-SHOP using the
initial estimates learned by the former and refined by the lat-
ter were shorter on average than when using only the initial
estimates.

In the future, we would like to investigate using our
framework for incorporating Reinforcement Learning and
HTN Learning with different reward schemes, such as ac-
tions with non-uniform cost or dynamic environments such

as games, in which the quality of plans generated is not
necessarily a direct function of the actions in the plan but
could be related to the performance of that plan in a stochas-
tic environment. The Monte Carlo techniques used in our
work have the advantage of simplicity, but converge slowly.
Thus, we are interested in designing a model in which more
sophisticated RL techniques, such as Temporal Difference
learning or Q-Learning, could be used instead.

Acknowledgments. This work was supported in part by
NGA grant HM1582-10-1-0011 and NSF grant 0642882.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

References
Barto, A. G., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Discrete Event Dy-
namic Systems 13(4):341–379.
Dietterich, T. G. 2000. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. JAIR
13:227–303.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kauffmann.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with minimal additional knowl-
edge engineering required. In Proceedings of AAAI-08.
Ilghami, O.; Munoz-Avila, H.; Nau, D.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. In Proceedings of ICML-05.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of IJCAI-99.
Nejati, N.; Langley, P.; and Könik, T. 2006. Learning hi-
erarchical task networks by observation. In Proceedings of
ICML-06.
Parr, R. 1998. Hierarchical Control and Learning for
Markov Decision Processes. Ph.D. Dissertation, University
of California at Berkeley.
Pérez, M. A. 1996. Representing and learning quality-
improving search control knowledge. In Proceedings of
ICML-96.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of
ICML-97.
Shapiro, D. 2001. Value-Driven Agents. Ph.D. Dissertation,
Stanford University.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing. MIT Press.
Sutton, R. S.; Precup, D.; and Singh., S. 1999. Be-
tween MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence
112:181–211.
Xu, K., and Muñoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. In Proceedings of AAAI-05.


