
HTN-MAKER: Learning HTNs with Minimal Additional Knowledge Engineering
Required

Chad Hogg and Héctor Muñoz-Avila
Department of Computer Science & Engineering

Lehigh University
Bethlehem, Pennsylvania 18015, USA

Ugur Kuter
University of Maryland,

Institute for Advanced Computer Studies,
College Park, Maryland 20742, USA

Abstract

We describe HTN-MAKER, an algorithm for learning hier-
archical planning knowledge in the form of decomposition
methods for Hierarchical Task Networks (HTNs). HTN-
MAKER takes as input the initial states from a set of clas-
sical planning problems in a planning domain and solutions
to those problems, as well as a set of semantically-annotated
tasks to be accomplished. The algorithm analyzes this se-
mantic information in order to determine which portions of
the input plans accomplish a particular task and constructs
HTN methods based on those analyses.
Our theoretical results show that HTN-MAKER is sound and
complete. We also present a formalism for a class of plan-
ning problems that are more expressive than classical plan-
ning. These planning problems can be represented as HTN
planning problems. We show that the methods learned by
HTN-MAKER enable an HTN planner to solve those prob-
lems. Our experiments confirm the theoretical results and
demonstrate convergence in three well-known planning do-
mains toward a set of HTN methods that can be used to solve
nearly any problem expressible as a classical planning prob-
lem in that domain, relative to a set of goals.

Introduction
A key challenge of automated planning is the requirement of
a domain expert to provide some sort of background plan-
ning knowledge about the dynamics of the planning do-
main. At a minimum, classical planners require semantic
descriptions (i.e., preconditions and effects) of possible ac-
tions. More recent planning paradigms allow or require the
expert to provide additional knowledge about the structural
properties of the domain and problem-solving strategies. In
many realistic planning domains, however, additional plan-
ning knowledge may not be completely available; this is
partly because it is very difficult for the experts to compile
such knowledge due to the complexities in the domains and
it is partly because there is limited access to an expert to pro-
vide it. Thus, it is crucial to develop learning techniques in
order to produce planning knowledge when human contri-
butions are limited or unavailable.

One of the best-known approaches for modeling planning
knowledge about a problem domain is Hierarchical Task

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Networks (HTNs). An HTN planner formulates a plan via
task-decomposition methods (also known as HTN meth-
ods), which describe how to decompose complex tasks (i.e.,
symbolic representations of activities to be performed) into
simpler subtasks until tasks are reached that correspond to
actions that can be performed directly. The basic idea was
developed in the mid-70s (Sacerdoti 1975), and the for-
mal underpinnings were developed in the mid-90s (Erol,
Hendler, and Nau 1996). More recently, the HTN planner
SHOP (Nau et al. 1999) has demonstrated impressive speed
gains over earlier classical planners by using HTN-based
domain-specific strategies for problem-solving while per-
forming domain-independent search. HTNs provide a natu-
ral modeling framework in many real-world applications in-
cluding evacuation planning, manufacturing, and UAV man-
agement planning (Nau et al. 2005).

In this paper, we describe a new technique to learn HTN
methods. Our contributions are as follows:

• We describe HTN-MAKER (Hierarchical Task Networks
with Minimal Additional Knowledge Engineering Re-
quired), an offline and incremental algorithm for learning
HTN methods. HTN-MAKER receives as input a set of
planning operators, a collection of initial states from clas-
sical planning problems and solutions to those problems,
and a collection of annotated tasks (defined below). It
produces a set of HTN methods. Together with the given
operators, the learned HTN methods can be used by an
HTN planner such as SHOP to solve HTN planning prob-
lems.

• We present theoretical results showing that the HTN-
MAKER algorithm is sound and complete with respect
to a set of goals. We formalize a class of planning prob-
lems that are more expressive than classical planning and
can be represented as HTN planning problems. Our the-
oretical results show that the methods learned by HTN-
MAKER enable an HTN planner to solve planning prob-
lems in that class.

• We demonstrate through experiments in three well-known
planning domains, namely Logistics, Blocks-World, and
Satellite, that HTN-MAKER returns a set of HTN meth-
ods capable of solving new planning problems on which
it was not trained.

Preliminaries
We use the usual definitions for HTN planning as in Chapter
11 of (Ghallab, Nau, and Traverso 2004). A state s is a col-
lection of ground atoms. A planning operator is a 4-tuple
o = (h,Pre,Del,Add), where h (the head of the operator) is
a logical expression of the form (n arg1 . . . argl) such that
n is a symbol denoting the name of the operator and each ar-
gument argi is either a logical variable or constant symbol.
The preconditions, delete list and add list of the planning
operator, Pre, Del, and Add respectively, are logical formu-
las over literals.

An action a is a ground instance of a planning operator.
An action is applicable to a state s if its preconditions hold
in that state. The result of applying a = (h,Pre,Del,Add)
to s is a new state s′ = APPLY(s, a) = (s \ Del) ∪ Add. A
plan π is a sequence of actions.

A task is a symbolic representation of an activity
in the world, formalized as an expression of the form
(t arg1 . . . argq) where t is a symbol denoting the name of
the activity and each argi is either a variable or a constant
symbol. A task can be either primitive or nonprimitive. A
primitive task corresponds to the head of a planning oper-
ator and denotes an action that can be directly executed in
the world. A nonprimitive task cannot be directly executed;
instead, it needs to be decomposed into simpler tasks until
primitive ones are reached.

In this paper, we restrict ourselves to the Ordered Task
Decomposition formalism of HTN planning (Nau et al.
1999). In this formalism, an HTN method is a proce-
dure that describes how to decompose nonprimitive tasks
into simpler ones. Formally, a method is a triple m =
(h,Pre,Subtasks), where h is a nonprimitive task (the head
of the method), Pre is a logical formula denoting the pre-
conditions of the method, and Subtasks is a totally-ordered
sequence of subtasks. A method m is applicable to a state
s and task t if the head h of the method matches t and the
preconditions of the method are satisfied in s. The result of
applying a method m to a state s and task t is the state s and
sequence of Subtasks.

An HTN planning problem is a 4-tuple Ph =
(s0, T,O,M), where s0 is the initial state, T is the initial
sequence of tasks, and O and M are sets of planning op-
erators and methods respectively. A solution for the HTN
planning problem Ph is a plan (i.e., a sequence of actions) π
that, when executed in the initial state, performs the desired
initial tasks T .

We define a classical planning problem as a 3-
tuple P c = (s0, g, O), where s0 is the initial state,
g is the goals represented as a conjunction of logical
atoms, and O is a set of planning operators defined
as above. A solution for the classical planning prob-
lem P c is a plan π = 〈a1, . . . , ak〉 such that the state
s′ = APPLY(APPLY(. . . , (APPLY(s0, a1), a2), . . .), ak)
satisfies the goals g.

In HTN planning, a task is simply a statement in predicate
logic, with no semantics other than those provided by the
methods that decompose it. We define an annotated task as
a triple t = (n,Pre,Effects) where n is a task, Pre is a set
of atoms known as the preconditions, and Effects is a set of

Algorithm 1 HTN-MAKER(P c, π, τ,M)
1: Input: An initial state s0 and a solution π = 〈a0, a1, . . . , ak〉

for a classical planning problem P c, a set of annotated tasks τ ,
and a set of HTN methods M

2: Output: An updated set M ′ of HTN methods
3: initialize S ← (s0)
4: for i← 1 to k do
5: si ← APPLY(si−1, ai−1) and append si to S
6: initialize X ← ∅
7: for f ← 1 to k do
8: for i← f − 1 down to 0 do
9: for all t = (n,Pre,Effects) in τ do

10: if Effects ⊆ sf and Effects * si and Pre ⊆ si then
11: m← LEARN(π, t,M,X, i, f)
12: insert the new method m into M
13: insert (m, i, f,Effects), the method m, its starting

and ending indices, and the effects of its annotated
task, into X

14: return M

atoms known as the effects. See the discussion of Figure 1
below for an example of an annotated task.

The preconditions and effects associated with an anno-
tated task as above give semantics for accomplishing the
task and enable us to define an equivalence between an an-
notated task and a set of goals, and thus, between a classi-
cal planning problem and an HTN planning problem. Given
a set of goal atoms g, we define the equivalent annotated
task as t = (n, ∅, g) for some task n. Then, the HTN-
equivalent planning problem to a classical planning prob-
lem P c = (s0, g, O) is an HTN planning problem Ph =
(s0, {n}, O,M) such that M is a set of HTN methods. This
notion of equivalence between HTN and classical planning
problems is crucial for analyzing the formal properties of
our learning algorithm described in the next section.

HTN-MAKER
HTN-MAKER is an incremental learning algorithm that
produces a knowledge base of HTN methods from an in-
put solution plan to a classical planning problem and suc-
cessively updates its knowledge base when presented with
solutions to new classical planning problems in the same
planning domain.

Algorithm 1 shows a high-level description of HTN-
Maker’s top-level learning procedure. For an input initial
state and a solution plan π for a classical planning problem,
HTN-MAKER first generates a list S of states by applying
the actions in π starting from the initial state s0 (see Lines
3–5).

The algorithm then traverses the states in which the effects
of an annotated task might become true (Line 7), the states
from which the accomplishment of those effects might begin
(Line 8), and the annotated tasks whose effects might have
been accomplished over that interval (Line 9). This traver-
sal order is chosen deliberately to provide the best opportu-
nity for learned methods to subsume each other. During this
traversal, if there is an annotated task whose effects match
the final state sf and whose preconditions match the start
state si (Line 10), then HTN-MAKER regresses the effects

Figure 1: Example of HTN obtained by HTN-MAKER.

of the annotated task through the plan elements (actions in
π or methods learned previously) that caused those effects,
in order to identify a sequence of subtasks that achieve the
task and the preconditions necessary to ensure the success
of those subtasks.

Unlike previous work on goal regression (Mitchell,
Keller, and Kedar-Cabelli 1986), HTN-MAKER can regress
goals both horizontally (through the actions) and vertically
(up the task hierarchy through previously-learned methods).
This is accomplished by the LEARN subroutine (Line 11,
described below), which returns a new method for the an-
notated task with these subtasks and preconditions. HTN-
MAKER then adds this method to the set of HTN methods
learned so far (Line 12). HTN-MAKER also stores the in-
stantiation of this method with the plan, along with the ini-
tial and final states indicating the subplan from which it was
learned, so that in further processing it may be used as a sub-
task in a new method (Line 13). In Algorithm 1, the set X
is the storage for this purpose; it holds the method m, the
indices of the starting and ending states in S associated with
m, and the effects of the annotated task associated with m.

Figure 1 demonstrates the inner workings of HTN-
MAKER on a short plan in the Logistics domain from ICP-2.
Suppose the input initial state consists of a package P1 in a
truck T1 at an airport L1 that contains an airplane A1. Sup-
pose that we have a single annotated task in τ , (deliver ?p
?l), with preconditions that ?p be a package and ?l be a loca-
tion, and effects that ?p be at ?l. After the first operator, the
package P1 has been delivered to location L1. Thus, HTN-
MAKER learns a method for solving this task bound to these
constants. The operator (unload-truck P1 T1 L1) produces
the effect (at P1 L1), so it will be selected as a subtask.

The learned method will be applicable when the types of
variables are correct and the package is in a truck that is at
the destination. In the next two states, there are no new valid
instantiations of the task effects. In the final state, the pack-
age P1 has been delivered to location L2, and at this time,
HTN-MAKER learns a recursive series of methods for our
delivery task as shown in Figure 1. The first method is for

Algorithm 2 LEARN(π, t,M,X, i, f)
1: Input: A plan π = 〈a0, a1, . . . , an〉, an annotated task t =

(n,Pre,Effects), a set of HTN methods M , a set of method
instantiations X , and initial and final state indices i and f

2: Output: m is a new method
3: RemEff ← Effects ; OutPre← ∅ ; c← f
4: Subtasks← (verifiertask(t))
5: while c > i do
6: Y = {(m′, k′, c,Effects′) ∈ X such that Effects′ ∩

(OutPre ∪ RemEff) 6= ∅ and k′ ≥ i}
7: if Y 6= ∅ then
8: select (m′, k′, c,Effects′) ∈ X such that m′ =

(n′,Pre′, Subtasks′) ∈M
9: prepend n′ to Subtasks

10: RemEff ← RemEff \ Effects′

11: OutPre← (OutPre \ Effects′) ∪ Pre′

12: c← k′

13: else
14: if ac−1 = (n′,Pre′,Del′,Add′) ∈ π and Add′ ∩

(OutPre ∪ RemEff) 6= ∅ then
15: prepend n′ to Subtasks
16: RemEff ← RemEff \ Add′

17: OutPre← (OutPre \ Add′) ∪ Pre′

18: c← c− 1
19: return m = (n,Pre ∪ RemEff ∪ OutPre, Subtasks)

delivering a package that is in an airplane at the destination
by unloading the airplane. The next delivers a package that
is in an airplane at the wrong location by flying to the desti-
nation, which must be an airport, and then delivering it. The
third requires that the package be at an airport that is not
the destination and that contains an airplane, and proceeds
by loading the package into airplane and then continuing to
deliver. The final unloads from a truck, then continues from
there to the final destination.

Algorithm 2 shows a high-level description of HTN-
MAKER’s LEARN subroutine. This subroutine first initial-
izes the set of remaining effects RemEff, which represent
the effects of the annotated task that are not accomplished
by any subtask yet collected (Line 3). Next it initializes a
set of outstanding preconditions OutPre (Line 3), a current
state counter c (Line 3), and a subtask list Subtasks (Line
4). The algorithm then collects a set Y of method instan-
tiations that (1) have an effect matching either a remaining
effect or outstanding precondition, and (2) lie within the sec-
tion of plan from which it is currently learning (Line 6). If
this set is not empty (Line 7), it nondeterministically selects
a member of the set to become a subtask (Line 8). Thus,
its head is prepended to the subtask list Subtasks (Line 9),
any remaining effects or outstanding preconditions that it ac-
complishes are removed (Lines 10–11), the preconditions of
the selected subtask are added to the list of outstanding pre-
conditions (Line 11), and the current state counter is moved
to where the selected method instantiation started (Line 12).

If no appropriate method instantiation exists, then LEARN
considers the operator that led to the current state as a possi-
ble subtask. The effects of the operator are checked against
the remaining effects and outstanding preconditions (Line
14), and if they are found to be helpful then the operator

is selected as a subtask. Thus the head of the operator is
prepended to the subtask list (Line 15), the effects of the op-
erator are removed from the remaining effects and outstand-
ing preconditions (Lines 16–17), the preconditions of the
operator are added to the outstanding preconditions (Line
17), and the current state counter is moved to the state from
which the operator was instantiated (Line 18). If the opera-
tor is not helpful, it is skipped as irrelevant and the current
state counter is adjusted to move before it (Line 18). This
process continues until the current state counter reaches the
initial state counter (Line 7). The LEARN subroutine returns
a new method with the same head as the annotated task that
was accomplished. The preconditions of this new method
include any preconditions of the annotated task, any effects
of the task that are not directly caused by any subtasks (the
remaining effects), and any conditions necessary for the sub-
tasks to be applicable (the outstanding preconditions); and
its subtasks are the list that has been collected.

To guarantee soundness (see the next section), each an-
notated task has an associated verifier task (Line 6 of Al-
gorithm 2). The HTN-MAKER algorithm creates a single
method for the verifier task, which has the effects of the as-
sociated annotated task as its preconditions and no subtasks.
(This is not shown in the high-level description in Algorithm
1.) This verifier is the last subtask of each learned method
for the annotated task, ensuring that the method indeed ac-
complishes the effects of its associated annotated task.1

Properties
In this section, we present the formal properties of the HTN-
MAKER learning algorithm. The following theorem estab-
lishes the soundness of HTN-MAKER.
Theorem 1. LetO be a set of planning operators and τ be a
set of annotated tasks for a classical planning domain. Sup-
pose HTN-MAKER is given a set of classical planning prob-
lems and a solution plan for each of those planning prob-
lems, and it produces a set M of HTN methods.

Then, for any classical planning problem P c in the do-
main, a solution π produced by a sound HTN planning algo-
rithm on the HTN-equivalent problem Ph using the methods
in M will be a solution to P c.

The proof is omitted for lack of space. We provide an ex-
ample demonstrating that without the verification tasks de-
scribed previously, it is possible to reuse methods in unsound
ways because a method selected for a subtask might result in
the deletion of an atom that is needed by its parent (see Fig-
ure 2). Given the provided annotated tasks and a plan 〈DE〉,
the first two methods could be learned, while the third would
be learned from a plan 〈F 〉. These methods could be used
to perform the task decomposition shown in Figure 3. The
annotated task states that “doAB” should have both “a” and
“b” as effects, but only “b” has been accomplished.

1The verification subtasks in the learned methods may cause an
HTN planner to frequently backtrack when it attempts to accom-
plish a task if the method does not produce the necessary effects.
However, in our experiments on standard planning domains, we
have never observed a single failure to decompose a verification
task.

Task doB pre: eff: b
Task doAB pre: eff: a, b

Op D pre: del: add: a
Op E pre: del: add: b
Op F pre: a del: a add: b

Method doB pre: subtasks: E
Method doAB pre: subtasks: D, doB
Method doB pre: a subtasks: F

Figure 2: An example set of annotated tasks and planning
operators in an artificial planning domain. The set of meth-
ods shown above are among the ones that would be learned
by HTN-MAKER if verification subtasks were not used.

State Tasks
() (doAB)
() ((D) (doB))

(a) (doB)
(a) (F)
(b) ()

Figure 3: A possible decomposition of the annotated task
doAB using the methods shown in Figure 2. Above, the
decomposition generates a plan that violates the semantics
of the task doAB because the plan, when executed, does not
achieve the goal a in the world.

We now establish the completeness of the HTN-MAKER
algorithm. We say that a setM of HTN methods is complete
relative to a set of goals g if, for any classical planning prob-
lem (s0, g, O) that is solvable, the HTN-equivalent problem
(s0, T,O,M) is solvable.

Theorem 2. Let O be a set of planning operators and τ be
a set of annotated tasks for a classical planning domain.

Then, there exists a finite number of input classical plan-
ning problems and their solutions such that HTN-MAKER
learns from this input a set M of methods that is complete
relative to g.

A sketch of the proof follows. First, we note that the
methods learned by HTN-MAKER from a given classical
planning problem can be used to solve the equivalent HTN
planning problem, because the methods learned may be de-
composed in reverse order to produce the input plan, which
is already known to be a solution. Second, we note that
adding additional methods to an HTN domain cannot de-
crease the number of problems that can be solved with
it. This follows from the HTN planning process, which at
each choice point non-deterministically chooses an applica-
ble method for decomposition. Adding additional methods
may increase the number of choices, but any choice that had
previously been available will remain so. Finally, the num-
ber of constant symbols in a classical planning domain is
finite. Thus there are a finite number of possible atoms and
a finite number of states. Thus, there are a finite number
of classical planning problems in a given planning domain
relative to a set of goals. Therefore, Theorem 2 holds.

Note that although the worst case requires learning from

every problem in the domain, our experiments indicate that
far fewer problems are needed in practice. In one experiment
in the Logistics domain, we were able to solve all solvable
problems that require delivering a single package to a loca-
tion after learning from only six controlled pairs of problems
and solution plans.

HTNs provide a planning language that is strictly more
expressive than classical planning (Erol, Hendler, and Nau
1996): in the general case this language is context-free,
whereas classical planning is restricted to regular languages.
Since learning context-free HTNs is a very hard problem, we
focus on a class of planning problems that are strictly more
expressive than classical problems, yet less expressive than
general HTNs. In the rest of this section, we formalize this
class of planning problems and show that HTN-MAKER’s
learned HTNs induce planning problems in this class, al-
though the algorithm learns HTN methods from classical
planning problems and their solutions. Consider again the
Logistics domain from the previous section. Suppose we
have a planning problem in which a package is at an initial
location L0, and needs to be delivered first to the location
L1, then to L2, and finally, to L3. This planning prob-
lem cannot be represented as a classical planning problem
without introducing function symbols into the representa-
tion language or fixing in advance the maximum number of
intermediate locations for all problems. On the other hand,
it would easily be represented as an HTN planning problem,
where we have a task in the initial task list of the HTN plan-
ning problem for delivering the package to each of its goal
locations in the specified order.

We formalize the notion of the class of planning problems
such as the one above as follows. Let (s0, g, O) be a plan-
ning problem. Then, there exists a partition (g0, g1, . . . , gk)
of the conditions in g such that each planning problem in the
sequence (s0, g0, O), (s1, g1, O), . . . , (sk, gk, O) is a classi-
cal planning problem and the condition gi holds in the state
si+1 for i = 0, . . . , k − 1.

We call the class of planning problems that have mul-
tiple goals but no classical representation as classically-
partionable planning problems. Note that classically-
partionable planning problems appear in many planning
domains, including Logistics, Blocks-World, ZenoTravel,
Rovers, Storage, and others that were used as benchmarks in
the past International Planning Competitions. Many learn-
ing systems, such as Icarus (Langley and Choi 2006), can-
not learn HTN methods for classically-partionable planning
problems since Icarus learns HTN methods to “achieve a
classical goal” and it needs the classical goal statement in
its input due to its means-ends analysis. One way to enable
Icarus to learn HTN methods for a classically-partionable
planning problem is to re-factor the problem into a series of
classical problems and give each problem as input to Icarus.
However, this would require a supervisor system that would
do the translation, run Icarus on the subproblems, and com-
bine the results. HTN-MAKER, on the other hand, can learn
from an initial state and a sequence of actions applicable in
that state, without requiring a goal as input.

The following theorem establishes our expressivity result:
Theorem 3. Let O be a set of planning operators and τ

be a set of annotated tasks for a classical planning domain.
Suppose HTN-MAKER is given a set of classical planning
problems in the domain and a solution plan for each of those
planning problems, and it produces a setM of HTN methods
that are complete relative to τ .

Let (s, g,O) be a classically-partionable
planning problem with the partition
(s0, g0, O), (s1, g1, O), . . . , (sk, gk, O). Then, the HTN
planning problem (s, T,O,M) is solvable, where T is a
sequence of tasks t1, . . . , tk and there is an annotated task
for each i = 1, . . . k in the domain.

Implementation and Experimental Evaluation
There are a number of implementation details that control
the effectiveness of HTN-MAKER. First, our implementa-
tion of the choice of a method instantiation to add as a sub-
task when several are available selects the instantiation that
extends over the largest portion of the underlying plan. This
favors learning right-recursive methods. Secondly, our im-
plementation of HTN-MAKER completely avoids learning
left-recursive methods by requiring the first subtask to al-
ways be primitive. This is useful because an HTN planner
like SHOP is likely to infinitely recurse on a left-recursive
learned method if the first compound subtask of the method
matches the head of the method. Finally, HTN-MAKER
never learns a method from a segment of a plan if knowledge
already exists to accomplish the task from there or earlier.

We first used the Logistics domain from the 2nd Interna-
tional Planning Competition (IPC-2) for our experiments. In
Logistics, the objective is to deliver packages between loca-
tions in various cities using trucks and airplanes. We have
varied the number of packages between 1 and 4 and ran-
domly generated 100 planning problems. For all of these
problems, we have used a single annotated task that delivers
a package to a location. We have run 5 trials in which 75 of
these problems are randomly selected as the training set and
25 are held out for testing. HTN-MAKER begins with an
empty set of methods and updates it with methods learned
from plans for each of the training problems presented in a
random order. After learning from a training problem, we
attempted to solve the HTN equivalent of each of the 25 test
problems in SHOP using the methods learned thusfar.

Figure 4 shows the percentage of test problems solved by
SHOP using the learned methods after each successive train-
ing example, averaged over the 5 trials. After learning from
the first 25 training problems, the learned set of HTN meth-
ods rapidly converged to nearly full coverage — i.e., SHOP
was able to solve most of the test problems with the meth-
ods learned by HTN-MAKER. After 60 training examples
all test problems can be solved.

In order to test HTN-MAKER in a domain where the
solution plans do not have the above characteristics, we
have performed the following experiments with the Blocks-
World domain, also from IPC-2. In Blocks-World, the so-
lution plans are usually specific to particular configurations
of the blocks in the initial state of a planning problem; thus,
they allow for only limited generalizations into learned HTN
methods.

To be able to perform this test in a controlled way, we have
used a goal configuration that involves stacking 5 blocks on
top of each other. Then, we have generated all of the 561
possible planning problems with 5 blocks and this particular
goal configuration. As before, we held out 25% of these as
test cases and used the same experimental design. In our
experiments, HTN-MAKER learned much more slowly in
the Blocks-World domain. In fact, using knowledge learned
from the entire training set, SHOP was still unable to solve
40% of the test set.

We also performed a similar experiment with 100 prob-
lems from the Satellite domain from IPC-3. The majority
of this domain could be learned from a single example, but
there were some trials in which not enough knowledge was
learned to solve the entire test set.

The Logistics and Satellite domains have a fairly straight-
forward structure; every goal can be solved by a plan that,
other than different variable bindings, is quite similar to a
plan that solves a different goal. Thus, a small set of train-
ing examples provides a pattern that can be adapted to solve
most potential problems in the domain. The Blocks-World
domain does not have this predictable structure because its
goals are much more inter-dependent. Thus, it is quite dif-
ficult to generalize a solution to one problem in such a way
that it can be used to solve a different problem. There are,
however, a number of special cases that must be individu-
ally observed. These differences are demonstrated both in
the convergence rates shown in Figure 4, and in the average
number of methods learned during a trial, which is 40.4 for
Logistics, 20.0 for Satellite, and 449.8 for Blocks-World.

Even in the highly structured domains there are rare spe-
cial cases that must be observed in the training set before
they can be solved. This explains why our experiments in
the Satellite domain do not show full convergence.

We have also experimentally verified that if we train on
all 561 Blocks-World problems described above, it is possi-
ble to solve all of them with the resulting knowledge. This
confirms Theorem 2, our completeness result, and demon-
strates the worst-case that we discussed above. Furthermore,
in the Logistics domain we were able to learn a set of HTN
methods that are complete relative to the goal of delivering
a single package from 6 carefully selected problems and so-
lutions.

Related Work
Learning task decompositions means eliciting the hierarchi-
cal structure relating tasks and subtasks. Existing work on
learning hierarchies elicits a hierarchy from a collection of
plans and from a given action model (Nejati, Langley, and
Könik 2006; Reddy and Tadepalli 1997; Ruby and Kibler
1991). A particularity of the existing work on learning task
models is that the tasks from the learned hierarchies are the
same goals that have been achieved by the plans. Reddy
and Tadepalli’s 1997 X-Learn, for example, uses inductive
generalization to learn task decomposition constructs, which
relate goals, subgoals, and conditions for applying d-rules.
By grouping goals in this way, the learned task models led
to speed-up in problem-solving. In (Nejati, Langley, and

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pe
rc

en
tS

ol
ve

d

Percent Training Size

Logistics
Blocks-World

Satellite

Figure 4: Percentage of problems solvable through the learn-
ing process.

Könik 2006; Reddy and Tadepalli 1997), some of the prob-
lems that were solved using the learned task models could
not be solved without using them (e.g., by using only the
action models), but this was only because of improved per-
formance with limited resources.

Two studies (Ilghami et al. 2005; Xu and Muñoz-Avila
2005) propose eager and lazy learning algorithms, respec-
tively, to learn the preconditions of HTN methods. These
systems require as input the hierarchical relationships be-
tween tasks and learn only the conditions under which a
method may be used. Another recent work (Nejati, Lang-
ley, and Könik 2006) learns a special case of HTNs known
as teleoreactive logic programs. Rather than a task list,
this system uses a collection of Horn clause-like concepts.
The means-end reasoning that is tightly integrated with this
learning mechanism is incapable of solving problems that
general HTNs can solve, such as the register assignment
problem.

Work on learning macro-operators (e.g., (Mooney 1988;
Botea, Muller, and Schaeffer 2005)) falls in the category
of speed-up learning, as do work on learning search con-
trol knowledge ((e.g., (Minton 1998; Fern, Yoon, and Gi-
van 2004)). Search control knowledge does not increase the
number of problems that theoretically can be solved. How-
ever, from a practical stand point, these systems increase the
number of problems that can be solved because of the reduc-
tion in runtime. Other researchers assumed that hierarchies
are given as inputs for learning task models.

Inductive approaches have been proposed for learning
from action models. For example, the DISTILL system
learns domain-specific planners from an input of plans that
have certain annotations (Winner and Veloso 2003). The
input includes the initial state and an action model. DIS-
TILL elicits a programming construct for plan generation
that combines the action model and search control strate-
gies. However, the strategies learned are not in the form of
HTNs.

Another related work is abstraction in planning such as
the Alpine (Knoblock 1993) and the Paris (Bergmann and
Wilke 1995) systems. These systems use both a collection
of operators and an abstraction model that indicates how to
abstract and specialize plans. The systems are able to solve
problems by abstracting them, finding abstract plans for the
abstract problems, and specializing the abstract plans to gen-
erate concrete solution plans. It is conceivable that some
of the ideas used in HTN-MAKER could be adapted to the
problem of learning abstraction models.

Conclusions
HTN planning is an effective problem-solving paradigm,
but the high knowledge engineering cost of developing an
HTN domain description is a significant impediment to the
adoption of HTN planning technology. We have described
a new algorithm, HTN-MAKER, for incrementally learn-
ing HTN domain knowledge from initial states of classical
planning problems and solution plans for those problems.
HTN-MAKER produces a set of HTN methods by learning
the decomposition structure of tasks from annotated tasks
and plans. The learner constructs a hierarchy in a bottom-
up manner by analyzing the sequences of operators in a
plan trace and determines the preconditions of methods from
those of their subtasks.

We have presented theoretical results showing that the
methods learned by HTN-MAKER are sound and complete
relative to the set of goals for which annotated tasks are pro-
vided. Furthermore, these methods can be used to solve
problems that could not be expressed using the classical
planning knowledge from which they were learned. Our
experiments on three well-known planning domains, Logis-
tics, Blocks-World, and Satellite, demonstrated that HTN-
MAKER converged to a set of HTN methods that solve
nearly all problems in the domain as more problems are pre-
sented.

We intend to expand this work in a couple of future direc-
tions. First is to study the effects of providing additional in-
formation in the annotated tasks on convergence speed. Sec-
ondly, we are currently developing techniques for using re-
inforcement learning mechanisms on top of HTN-MAKER
in order to learn the expected values of the HTN methods
produced by the algorithm. This will enable us to study op-
timality and usefulness properties of the learned HTNs.

Acknowledgments
This research was in part supported by the National Science
Foundation (NSF 0642882) and the Defense Advanced Re-
search Projects Agency (DARPA). The opinions in this pa-
per are those of the authors and do not necessarily reflect the
opinions of the funders.

References
Bergmann, R., and Wilke, W. 1995. Building and refin-
ing abstract planning cases by change of representation lan-
guage. Journal of Artificial Intelligence Research 53–118.

Botea, A.; Muller, M.; and Schaeffer, J. 2005. Learning
partial-order macros from solutions. In Proc. of ICAPS ’05.
AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for hierarchical task-network planning. Annals of
Mathematics and Artificial Intelligence 18:69–93.
Fern, A.; Yoon, S. W.; and Givan, R. 2004. Learning
domain-specific control knowledge from random walks. In
Proc. of ICAPS ’04. AAAI Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kauffmann.
Ilghami, O.; Muñoz-Avila, H.; Nau, D.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. In Proc. of ICML ’05.
Knoblock, C. 1993. Abstraction Hierarchies: An Auto-
mated Approach to Reducing Search in Planning. Norwell,
MA: Kluwer Academic Publishers.
Langley, P., and Choi, D. 2006. Learning recursive con-
trol programs from problem solving. J. Mach. Learn. Res.
7:493–518.
Minton, S. 1998. Learning Effective Search Control
Knowledge: an Explanation-Based Approach. Ph.D. Dis-
sertation, Carnegie Mellon University.
Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-based generalization: A unifying view. Ma-
chine Learning 1.
Mooney, R. J. 1988. Generalizing the order of operators in
macro-operators. Machine Learning 270–283.
Nau, D.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proc. of
IJCAI ’99, 968–973. AAAI Press.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Muñoz-
Avila, H.; Murdock, J. W.; Wu, D.; and Yaman, F. 2005.
Applications of SHOP and SHOP2. IEEE Intelligent Sys-
tems 20(2):34–41.
Nejati, N.; Langley, P.; and Könik, T. 2006. Learning hi-
erarchical task networks by observation. In Proc. of ICML
’06, 665–672. New York, NY, USA: ACM.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proc. of ICML ’97.
Ruby, D., and Kibler, D. F. 1991. SteppingStone: An
empirical and analytic evaluation. In Proc. of AAAI ’91,
527–531. Morgan Kaufmann.
Sacerdoti, E. D. 1975. The nonlinear nature of plans. In
Proc. of IJCAI ’75, 206–214.
Winner, E., and Veloso, M. M. 2003. DISTILL: Learning
domain-specific planners by example. In Proc. of ICML
’03.
Xu, K., and Muñoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. In Proc. of AAAI ’05. AAAI Press.

